氧化应激引发慢性肾功能衰竭诱发心脏病的血液动力学变化。

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Payel Sen,Jules Hamers,Theresa Sittig,Bachuki Shashikadze,Laura d'Ambrosio,Jan B Stöckl,Susanne Bierschenk,Hengliang Zhang,Chiara d'Alessio,Lotte M Zandbergen,Valerie Pauly,Sebastian Clauss,Eckhard Wolf,Andreas Dendorfer,Thomas Fröhlich,Daphne Merkus
{"title":"氧化应激引发慢性肾功能衰竭诱发心脏病的血液动力学变化。","authors":"Payel Sen,Jules Hamers,Theresa Sittig,Bachuki Shashikadze,Laura d'Ambrosio,Jan B Stöckl,Susanne Bierschenk,Hengliang Zhang,Chiara d'Alessio,Lotte M Zandbergen,Valerie Pauly,Sebastian Clauss,Eckhard Wolf,Andreas Dendorfer,Thomas Fröhlich,Daphne Merkus","doi":"10.1007/s00395-024-01085-7","DOIUrl":null,"url":null,"abstract":"Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone. Therefore, we studied the impact of CKD on the heart and combined proteome studies with measurement of cardiac function and perfusion to identify processes involved in cardiac remodeling in CKD. CKD was induced in swine at 10-12 weeks of age while sham-operated swine served as controls. 5-6 months later, left ventricular (LV) function and coronary flow reserve were measured. LC-MS-MS-based proteomic analysis of LV tissue was performed. LV myocardium and kidneys were histologically examined for interstitial fibrosis and oxidative stress. Renal embolization resulted in mild chronic kidney injury (increased fibrosis and urinary NGAL). PV loops showed LV dilation and increased wall stress, while preload recruitable stroke work was impaired in CKD. Quantitative proteomic analysis of LV myocardium and STRING pre-ranked functional analysis showed enrichments in pathways related to contractile function, reactive oxygen species, and extracellular matrix (ECM) remodeling, which were confirmed histologically and associated with impaired total anti-oxidant capacity. H2O2 exposure of myocardial slices from CKD, but not normal swine, impaired contractile function. Furthermore, in CKD, mitochondrial proteins were downregulated suggesting mitochondrial dysfunction which was associated with higher basal coronary blood flow. Thus, mild CKD induces alterations in mitochondrial proteins along with contractile proteins, oxidative stress and ECM remodeling, that were associated with changes in cardiac function and perfusion.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"59 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress initiates hemodynamic change in CKD-induced heart disease.\",\"authors\":\"Payel Sen,Jules Hamers,Theresa Sittig,Bachuki Shashikadze,Laura d'Ambrosio,Jan B Stöckl,Susanne Bierschenk,Hengliang Zhang,Chiara d'Alessio,Lotte M Zandbergen,Valerie Pauly,Sebastian Clauss,Eckhard Wolf,Andreas Dendorfer,Thomas Fröhlich,Daphne Merkus\",\"doi\":\"10.1007/s00395-024-01085-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone. Therefore, we studied the impact of CKD on the heart and combined proteome studies with measurement of cardiac function and perfusion to identify processes involved in cardiac remodeling in CKD. CKD was induced in swine at 10-12 weeks of age while sham-operated swine served as controls. 5-6 months later, left ventricular (LV) function and coronary flow reserve were measured. LC-MS-MS-based proteomic analysis of LV tissue was performed. LV myocardium and kidneys were histologically examined for interstitial fibrosis and oxidative stress. Renal embolization resulted in mild chronic kidney injury (increased fibrosis and urinary NGAL). PV loops showed LV dilation and increased wall stress, while preload recruitable stroke work was impaired in CKD. Quantitative proteomic analysis of LV myocardium and STRING pre-ranked functional analysis showed enrichments in pathways related to contractile function, reactive oxygen species, and extracellular matrix (ECM) remodeling, which were confirmed histologically and associated with impaired total anti-oxidant capacity. H2O2 exposure of myocardial slices from CKD, but not normal swine, impaired contractile function. Furthermore, in CKD, mitochondrial proteins were downregulated suggesting mitochondrial dysfunction which was associated with higher basal coronary blood flow. Thus, mild CKD induces alterations in mitochondrial proteins along with contractile proteins, oxidative stress and ECM remodeling, that were associated with changes in cardiac function and perfusion.\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-024-01085-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01085-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

慢性肾脏病(CKD)易导致心脏重塑和冠状动脉微血管功能障碍。在猪身上进行的研究发现了微血管结构和功能的变化,以及线粒体结构和氧化应激的变化。然而,慢性肾功能衰竭与代谢紊乱同时存在,从而掩盖了慢性肾功能衰竭单独造成的影响。因此,我们研究了 CKD 对心脏的影响,并将蛋白质组研究与心脏功能和灌注测量相结合,以确定 CKD 中心脏重塑的过程。我们在猪 10-12 周龄时诱导其患慢性肾功能衰竭,并以假手术猪作为对照。5-6 个月后,测量左心室(LV)功能和冠状动脉血流储备。对左心室组织进行了基于 LC-MS-MS 的蛋白质组学分析。对左心室心肌和肾脏进行组织学检查,以了解间质纤维化和氧化应激情况。肾栓塞导致轻度慢性肾损伤(纤维化和尿NGAL增加)。PV环显示左心室扩张和室壁应力增加,而CKD患者的前负荷可募集搏动功受损。左心室心肌的定量蛋白质组分析和 STRING 预排序功能分析表明,与收缩功能、活性氧和细胞外基质(ECM)重塑相关的通路富集,这在组织学上得到了证实,并与总抗氧化能力受损有关。CKD 猪心肌切片暴露于 H2O2 会损害收缩功能,而正常猪心肌切片则不会。此外,在 CKD 中,线粒体蛋白下调,表明线粒体功能障碍与较高的基础冠状动脉血流量有关。因此,轻度慢性肾功能衰竭会诱导线粒体蛋白以及收缩蛋白、氧化应激和 ECM 重塑的改变,这与心脏功能和灌注的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidative stress initiates hemodynamic change in CKD-induced heart disease.
Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone. Therefore, we studied the impact of CKD on the heart and combined proteome studies with measurement of cardiac function and perfusion to identify processes involved in cardiac remodeling in CKD. CKD was induced in swine at 10-12 weeks of age while sham-operated swine served as controls. 5-6 months later, left ventricular (LV) function and coronary flow reserve were measured. LC-MS-MS-based proteomic analysis of LV tissue was performed. LV myocardium and kidneys were histologically examined for interstitial fibrosis and oxidative stress. Renal embolization resulted in mild chronic kidney injury (increased fibrosis and urinary NGAL). PV loops showed LV dilation and increased wall stress, while preload recruitable stroke work was impaired in CKD. Quantitative proteomic analysis of LV myocardium and STRING pre-ranked functional analysis showed enrichments in pathways related to contractile function, reactive oxygen species, and extracellular matrix (ECM) remodeling, which were confirmed histologically and associated with impaired total anti-oxidant capacity. H2O2 exposure of myocardial slices from CKD, but not normal swine, impaired contractile function. Furthermore, in CKD, mitochondrial proteins were downregulated suggesting mitochondrial dysfunction which was associated with higher basal coronary blood flow. Thus, mild CKD induces alterations in mitochondrial proteins along with contractile proteins, oxidative stress and ECM remodeling, that were associated with changes in cardiac function and perfusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信