{"title":"热驱动可压缩流体平衡的无条件稳定性","authors":"Eduard Feireisl, Yong Lu, Yongzhong Sun","doi":"10.1007/s00205-024-02044-1","DOIUrl":null,"url":null,"abstract":"<div><p>We show that small perturbations of the spatially homogeneous equilibrium of a thermally driven compressible viscous fluid are globally stable. Specifically, any weak solution of the evolutionary Navier–Stokes–Fourier system driven by thermal convection converges to an equilibrium as time goes to infinity. The main difficulty to overcome is the fact the problem does not admit any obvious Lyapunov function. The result applies, in particular, to the Rayleigh–Bénard convection problem.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditional Stability of Equilibria in Thermally Driven Compressible Fluids\",\"authors\":\"Eduard Feireisl, Yong Lu, Yongzhong Sun\",\"doi\":\"10.1007/s00205-024-02044-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that small perturbations of the spatially homogeneous equilibrium of a thermally driven compressible viscous fluid are globally stable. Specifically, any weak solution of the evolutionary Navier–Stokes–Fourier system driven by thermal convection converges to an equilibrium as time goes to infinity. The main difficulty to overcome is the fact the problem does not admit any obvious Lyapunov function. The result applies, in particular, to the Rayleigh–Bénard convection problem.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02044-1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02044-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Unconditional Stability of Equilibria in Thermally Driven Compressible Fluids
We show that small perturbations of the spatially homogeneous equilibrium of a thermally driven compressible viscous fluid are globally stable. Specifically, any weak solution of the evolutionary Navier–Stokes–Fourier system driven by thermal convection converges to an equilibrium as time goes to infinity. The main difficulty to overcome is the fact the problem does not admit any obvious Lyapunov function. The result applies, in particular, to the Rayleigh–Bénard convection problem.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.