凯勒-西格尔系统中快速化学扩散极限的初始层特征

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Min Li, Zhaoyin Xiang
{"title":"凯勒-西格尔系统中快速化学扩散极限的初始层特征","authors":"Min Li,&nbsp;Zhaoyin Xiang","doi":"10.1007/s10440-024-00695-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the fast chemical diffusion limit from a parabolic-parabolic Keller-Segel system to the corresponding parabolic-elliptic Keller-Segel system by constructing approximate solutions with an appropriate order via an asymptotic expansion. Nonlinear stability of the precise initial layer is characterized with an exact convergence rate by using basic energy method.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"194 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Initial Layer for Fast Chemical Diffusion Limit in Keller-Segel System\",\"authors\":\"Min Li,&nbsp;Zhaoyin Xiang\",\"doi\":\"10.1007/s10440-024-00695-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the fast chemical diffusion limit from a parabolic-parabolic Keller-Segel system to the corresponding parabolic-elliptic Keller-Segel system by constructing approximate solutions with an appropriate order via an asymptotic expansion. Nonlinear stability of the precise initial layer is characterized with an exact convergence rate by using basic energy method.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00695-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00695-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了从抛物-抛物 Keller-Segel 系统到相应的抛物-椭圆 Keller-Segel 系统的快速化学扩散极限,通过渐近展开构建了适当阶次的近似解。利用基本能量法,精确初始层的非线性稳定性具有精确的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Initial Layer for Fast Chemical Diffusion Limit in Keller-Segel System

This paper investigates the fast chemical diffusion limit from a parabolic-parabolic Keller-Segel system to the corresponding parabolic-elliptic Keller-Segel system by constructing approximate solutions with an appropriate order via an asymptotic expansion. Nonlinear stability of the precise initial layer is characterized with an exact convergence rate by using basic energy method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信