近似线性欧几里得玻色方程

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Cuicui Long, Jinggang Tan, Aliang Xia
{"title":"近似线性欧几里得玻色方程","authors":"Cuicui Long,&nbsp;Jinggang Tan,&nbsp;Aliang Xia","doi":"10.1007/s10440-024-00693-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the following nonlinear bosonic equation on Euclidean space arising in string theory and cosmology: </p><div><div><span>$$ -\\Delta e^{-c\\Delta }u+mu=f(x,u),\\quad x\\in {\\mathbb{R}}^{n}, $$</span></div><div>\n (P)\n </div></div><p> where <span>\\(n\\ge 3\\)</span>, <span>\\(m&gt;0\\)</span>, <span>\\(c&gt;0\\)</span> and <span>\\(\\frac{f(x,u)}{u}\\)</span> tends to a positive function <span>\\(h(x)\\)</span> independent of <span>\\(u\\)</span> as <span>\\(u\\rightarrow +\\infty \\)</span>, <span>\\(e^{-c\\Delta }\\)</span> is given by a power series with <span>\\(\\Delta \\)</span> is the Euclidean Laplace operator. Here, the nonlinear term <span>\\(f(x,u)\\)</span> does not satisfy the usual condition: </p><div><div><span>$$ 0\\le F(x,u):=\\int _{0}^{u}f(x,t)\\,dt\\le \\frac{1}{2+\\theta }f(x,u)u, $$</span></div><div>\n (AR)\n </div></div><p> for <span>\\(\\theta &gt;0\\)</span> and <span>\\(|u|\\)</span> is large, which is important in using the mountain pass theorem, see Alves et al. (J. Differ. Equ. 323:229-252, 2022) and Corrêa et al. (J. Differ. Equ. 363:491-517, 2023). This paper is devoted to discuss how to use the mountain pass theorem to obtain the existence of nontrivial solution to problem (P) without the (AR) condition.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically Linear Euclidean Bosonic Equations\",\"authors\":\"Cuicui Long,&nbsp;Jinggang Tan,&nbsp;Aliang Xia\",\"doi\":\"10.1007/s10440-024-00693-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the following nonlinear bosonic equation on Euclidean space arising in string theory and cosmology: </p><div><div><span>$$ -\\\\Delta e^{-c\\\\Delta }u+mu=f(x,u),\\\\quad x\\\\in {\\\\mathbb{R}}^{n}, $$</span></div><div>\\n (P)\\n </div></div><p> where <span>\\\\(n\\\\ge 3\\\\)</span>, <span>\\\\(m&gt;0\\\\)</span>, <span>\\\\(c&gt;0\\\\)</span> and <span>\\\\(\\\\frac{f(x,u)}{u}\\\\)</span> tends to a positive function <span>\\\\(h(x)\\\\)</span> independent of <span>\\\\(u\\\\)</span> as <span>\\\\(u\\\\rightarrow +\\\\infty \\\\)</span>, <span>\\\\(e^{-c\\\\Delta }\\\\)</span> is given by a power series with <span>\\\\(\\\\Delta \\\\)</span> is the Euclidean Laplace operator. Here, the nonlinear term <span>\\\\(f(x,u)\\\\)</span> does not satisfy the usual condition: </p><div><div><span>$$ 0\\\\le F(x,u):=\\\\int _{0}^{u}f(x,t)\\\\,dt\\\\le \\\\frac{1}{2+\\\\theta }f(x,u)u, $$</span></div><div>\\n (AR)\\n </div></div><p> for <span>\\\\(\\\\theta &gt;0\\\\)</span> and <span>\\\\(|u|\\\\)</span> is large, which is important in using the mountain pass theorem, see Alves et al. (J. Differ. Equ. 323:229-252, 2022) and Corrêa et al. (J. Differ. Equ. 363:491-517, 2023). This paper is devoted to discuss how to use the mountain pass theorem to obtain the existence of nontrivial solution to problem (P) without the (AR) condition.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00693-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00693-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了弦理论和宇宙学中出现的欧几里得空间上的以下非线性玻色方程:$$ -\Delta e^{-c\Delta }u+mu=f(x,u),\quad x\in {\mathbb{R}}^{n}, $$ (P) where \(n\ge 3\), \(m>0\),\(c>;0) and\(\frac{f(x,u)}{u}\) tends to a positive function \(h(x)\) independent of \(u\) as \(u\rightarrow +\infty \), \(e^{-c\Delta }\) is given by a power series with \(\Delta \) is the Euclidean Laplace operator.这里,非线性项 \(f(x,u)\)不满足通常条件: $$ 0\le F(x,u):=\int _{0}^{u}f(x,t)\,dt\le \frac{1}{2+\theta }f(x,u)u, $$ (AR) for \(\theta >0\) and \(|u|\) is large, which is important in using the mountain pass theorem, see Alves et al.(J. Differ. Equ. 323:229-252, 2022) 和 Corrêa 等人 (J. Differ. Equ. 363:491-517, 2023)。本文致力于讨论如何利用山口定理获得问题 (P) 的非微观解的存在性,而无需 (AR) 条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically Linear Euclidean Bosonic Equations

We investigate the following nonlinear bosonic equation on Euclidean space arising in string theory and cosmology:

$$ -\Delta e^{-c\Delta }u+mu=f(x,u),\quad x\in {\mathbb{R}}^{n}, $$
(P)

where \(n\ge 3\), \(m>0\), \(c>0\) and \(\frac{f(x,u)}{u}\) tends to a positive function \(h(x)\) independent of \(u\) as \(u\rightarrow +\infty \), \(e^{-c\Delta }\) is given by a power series with \(\Delta \) is the Euclidean Laplace operator. Here, the nonlinear term \(f(x,u)\) does not satisfy the usual condition:

$$ 0\le F(x,u):=\int _{0}^{u}f(x,t)\,dt\le \frac{1}{2+\theta }f(x,u)u, $$
(AR)

for \(\theta >0\) and \(|u|\) is large, which is important in using the mountain pass theorem, see Alves et al. (J. Differ. Equ. 323:229-252, 2022) and Corrêa et al. (J. Differ. Equ. 363:491-517, 2023). This paper is devoted to discuss how to use the mountain pass theorem to obtain the existence of nontrivial solution to problem (P) without the (AR) condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信