{"title":"用于 Prolog 查询翻译的量子空间高效大语言模型","authors":"Roshan Ahmed, S. Sridevi","doi":"10.1007/s11128-024-04559-8","DOIUrl":null,"url":null,"abstract":"<div><p>As large language models (LLMs) continue to expand in complexity, their size follows an exponential increase following Moore’s law. However, implementing such complex tasks with LLMs poses a significant challenge, as classical computers may lack the necessary space to run or store the model parameters. In this context leveraging the principles of hybrid quantum machine learning for language models offers a promising solution to mitigate this issue by reducing storage space for model parameters. Although pure quantum language models have demonstrated success in recent past, they are constrained by limited features and availability. In this research we propose the DeepKet model an approach with a quantum embedding layer, which utilizes the Hilbert space generated by quantum entanglement to store feature vectors, leading to a significant reduction in size. The experimental analysis evaluates the performance of open-source pre-trained models like Microsoft Phi and CodeGen, specifically fine-tuned for generating Prolog code for geo-spatial data retrieval. Furthermore, it investigates the effectiveness of quantum DeepKet embedding layers by comparing them with the total parameter count of traditional models.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum space-efficient large language models for Prolog query translation\",\"authors\":\"Roshan Ahmed, S. Sridevi\",\"doi\":\"10.1007/s11128-024-04559-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As large language models (LLMs) continue to expand in complexity, their size follows an exponential increase following Moore’s law. However, implementing such complex tasks with LLMs poses a significant challenge, as classical computers may lack the necessary space to run or store the model parameters. In this context leveraging the principles of hybrid quantum machine learning for language models offers a promising solution to mitigate this issue by reducing storage space for model parameters. Although pure quantum language models have demonstrated success in recent past, they are constrained by limited features and availability. In this research we propose the DeepKet model an approach with a quantum embedding layer, which utilizes the Hilbert space generated by quantum entanglement to store feature vectors, leading to a significant reduction in size. The experimental analysis evaluates the performance of open-source pre-trained models like Microsoft Phi and CodeGen, specifically fine-tuned for generating Prolog code for geo-spatial data retrieval. Furthermore, it investigates the effectiveness of quantum DeepKet embedding layers by comparing them with the total parameter count of traditional models.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04559-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04559-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Quantum space-efficient large language models for Prolog query translation
As large language models (LLMs) continue to expand in complexity, their size follows an exponential increase following Moore’s law. However, implementing such complex tasks with LLMs poses a significant challenge, as classical computers may lack the necessary space to run or store the model parameters. In this context leveraging the principles of hybrid quantum machine learning for language models offers a promising solution to mitigate this issue by reducing storage space for model parameters. Although pure quantum language models have demonstrated success in recent past, they are constrained by limited features and availability. In this research we propose the DeepKet model an approach with a quantum embedding layer, which utilizes the Hilbert space generated by quantum entanglement to store feature vectors, leading to a significant reduction in size. The experimental analysis evaluates the performance of open-source pre-trained models like Microsoft Phi and CodeGen, specifically fine-tuned for generating Prolog code for geo-spatial data retrieval. Furthermore, it investigates the effectiveness of quantum DeepKet embedding layers by comparing them with the total parameter count of traditional models.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.