V. Y. Tugaenko, A. V. Vodolazhsky, R. A. Evdokimov
{"title":"在大气中运动的空间物体表面破坏过程中粒子的形成","authors":"V. Y. Tugaenko, A. V. Vodolazhsky, R. A. Evdokimov","doi":"10.1134/S0038094624700540","DOIUrl":null,"url":null,"abstract":"<p>When passing through the Earth’s atmosphere, cosmic bodies are subjected to significant loads due to the impact of high-speed gas flow on their surface. Under the influence of aerodynamic forces and strong heat flows, these bodies are destroyed. The mechanisms of destruction depend on their composition, structure, speed, size and strength. Artificial space bodies move in the atmosphere, generally maintaining their orientation in space, and reach the surface, maintaining integrity due to their high strength. As a result of surface destruction of the frontal part of these bodies, destruction products enter the plasma layer surrounding them when moving in the atmosphere. The design features of the Soyuz descent vehicle made it possible to study the dust component of the plasma layer from the deposits deposited on the porthole. Data on particles detected on the surface of the spacecraft are analyzed, and the results of a statistical analysis of the resulting particle size distribution are presented. It is shown that the distribution curve is well described by a power law.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"58 6","pages":"709 - 714"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Particles during Surface Destruction of Space Bodies Moving in the Atmosphere\",\"authors\":\"V. Y. Tugaenko, A. V. Vodolazhsky, R. A. Evdokimov\",\"doi\":\"10.1134/S0038094624700540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When passing through the Earth’s atmosphere, cosmic bodies are subjected to significant loads due to the impact of high-speed gas flow on their surface. Under the influence of aerodynamic forces and strong heat flows, these bodies are destroyed. The mechanisms of destruction depend on their composition, structure, speed, size and strength. Artificial space bodies move in the atmosphere, generally maintaining their orientation in space, and reach the surface, maintaining integrity due to their high strength. As a result of surface destruction of the frontal part of these bodies, destruction products enter the plasma layer surrounding them when moving in the atmosphere. The design features of the Soyuz descent vehicle made it possible to study the dust component of the plasma layer from the deposits deposited on the porthole. Data on particles detected on the surface of the spacecraft are analyzed, and the results of a statistical analysis of the resulting particle size distribution are presented. It is shown that the distribution curve is well described by a power law.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":\"58 6\",\"pages\":\"709 - 714\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0038094624700540\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094624700540","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Formation of Particles during Surface Destruction of Space Bodies Moving in the Atmosphere
When passing through the Earth’s atmosphere, cosmic bodies are subjected to significant loads due to the impact of high-speed gas flow on their surface. Under the influence of aerodynamic forces and strong heat flows, these bodies are destroyed. The mechanisms of destruction depend on their composition, structure, speed, size and strength. Artificial space bodies move in the atmosphere, generally maintaining their orientation in space, and reach the surface, maintaining integrity due to their high strength. As a result of surface destruction of the frontal part of these bodies, destruction products enter the plasma layer surrounding them when moving in the atmosphere. The design features of the Soyuz descent vehicle made it possible to study the dust component of the plasma layer from the deposits deposited on the porthole. Data on particles detected on the surface of the spacecraft are analyzed, and the results of a statistical analysis of the resulting particle size distribution are presented. It is shown that the distribution curve is well described by a power law.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.