FIP-GNN:用于可扩展晶粒级疲劳指标参数预测的图神经网络

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gyu-Jang Sim , Myoung-Gyu Lee , Marat I. Latypov
{"title":"FIP-GNN:用于可扩展晶粒级疲劳指标参数预测的图神经网络","authors":"Gyu-Jang Sim ,&nbsp;Myoung-Gyu Lee ,&nbsp;Marat I. Latypov","doi":"10.1016/j.scriptamat.2024.116407","DOIUrl":null,"url":null,"abstract":"<div><div>High-cycle fatigue is a critical performance metric of structural alloys for many applications. The high cost, time, and labor involved in experimental fatigue testing call for efficient and accurate computer models of fatigue life. We present FIP-GNN – a graph neural network for polycrystals that (i) predicts fatigue indicator parameters as grain-level inelastic responses to cyclic loading quantifying the local driving force for crack initiation and (ii) generalizes these predictions to large microstructure volume elements with grain populations well beyond those used in training. These advances can make significant contributions to statistically rigorous and computationally efficient modeling of high-cycle fatigue – a long-standing challenge in the field.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116407"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIP-GNN: Graph neural networks for scalable prediction of grain-level fatigue indicator parameters\",\"authors\":\"Gyu-Jang Sim ,&nbsp;Myoung-Gyu Lee ,&nbsp;Marat I. Latypov\",\"doi\":\"10.1016/j.scriptamat.2024.116407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-cycle fatigue is a critical performance metric of structural alloys for many applications. The high cost, time, and labor involved in experimental fatigue testing call for efficient and accurate computer models of fatigue life. We present FIP-GNN – a graph neural network for polycrystals that (i) predicts fatigue indicator parameters as grain-level inelastic responses to cyclic loading quantifying the local driving force for crack initiation and (ii) generalizes these predictions to large microstructure volume elements with grain populations well beyond those used in training. These advances can make significant contributions to statistically rigorous and computationally efficient modeling of high-cycle fatigue – a long-standing challenge in the field.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"255 \",\"pages\":\"Article 116407\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004421\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004421","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在许多应用中,高循环疲劳是结构合金的一个关键性能指标。实验疲劳测试的成本、时间和人力都很高,因此需要高效、准确的疲劳寿命计算机模型。我们提出了 FIP-GNN--一种用于多晶体的图神经网络,它(i)将疲劳指标参数预测为对循环加载的晶粒级非弹性响应,量化了裂纹萌发的局部驱动力;(ii)将这些预测推广到大微结构体积元素,其晶粒群远远超出了训练中使用的晶粒群。这些进展可为高循环疲劳的严谨统计和高效计算建模做出重大贡献,而这正是该领域长期面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FIP-GNN: Graph neural networks for scalable prediction of grain-level fatigue indicator parameters

FIP-GNN: Graph neural networks for scalable prediction of grain-level fatigue indicator parameters
High-cycle fatigue is a critical performance metric of structural alloys for many applications. The high cost, time, and labor involved in experimental fatigue testing call for efficient and accurate computer models of fatigue life. We present FIP-GNN – a graph neural network for polycrystals that (i) predicts fatigue indicator parameters as grain-level inelastic responses to cyclic loading quantifying the local driving force for crack initiation and (ii) generalizes these predictions to large microstructure volume elements with grain populations well beyond those used in training. These advances can make significant contributions to statistically rigorous and computationally efficient modeling of high-cycle fatigue – a long-standing challenge in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信