在叙事文本中快速发现跨域事件

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ruifang He , Fei Huang , Jinsong Ma , Jinpeng Zhang , Yongkai Zhu , Shiqi Zhang , Jie Bai
{"title":"在叙事文本中快速发现跨域事件","authors":"Ruifang He ,&nbsp;Fei Huang ,&nbsp;Jinsong Ma ,&nbsp;Jinpeng Zhang ,&nbsp;Yongkai Zhu ,&nbsp;Shiqi Zhang ,&nbsp;Jie Bai","doi":"10.1016/j.ipm.2024.103901","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-domain event detection presents notable challenges in the form of data scarcity, and existing few-shot algorithms only consider events whose types are predefined, resulting in low coverage or excessive trivial identification results. To address this issue, this paper proposes the task <em>Few-shot Cross Domain Event Discovery</em>, which includes two subtasks: <em>Domain Event Discovery</em> and <em>Few-shot Domain Adaptation</em>. The former aims to identify the <em>type-agnostic event triggers</em>, and the latter completes domain adaptation with only a few annotated domain samples. Additionally, we introduce a positive–negative balanced sampling mechanism and a novel domain parameter adapter for these two subtasks, respectively. Extensive experiments on the DuEE dataset and the ACE2005 dataset show that our proposed method outperforms the current state-of-the-art method by 6.3% in Mix-F1 score on average. Moreover, we achieve SOTA performance in all domains of the DuEE dataset.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103901"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-shot cross domain event discovery in narrative text\",\"authors\":\"Ruifang He ,&nbsp;Fei Huang ,&nbsp;Jinsong Ma ,&nbsp;Jinpeng Zhang ,&nbsp;Yongkai Zhu ,&nbsp;Shiqi Zhang ,&nbsp;Jie Bai\",\"doi\":\"10.1016/j.ipm.2024.103901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cross-domain event detection presents notable challenges in the form of data scarcity, and existing few-shot algorithms only consider events whose types are predefined, resulting in low coverage or excessive trivial identification results. To address this issue, this paper proposes the task <em>Few-shot Cross Domain Event Discovery</em>, which includes two subtasks: <em>Domain Event Discovery</em> and <em>Few-shot Domain Adaptation</em>. The former aims to identify the <em>type-agnostic event triggers</em>, and the latter completes domain adaptation with only a few annotated domain samples. Additionally, we introduce a positive–negative balanced sampling mechanism and a novel domain parameter adapter for these two subtasks, respectively. Extensive experiments on the DuEE dataset and the ACE2005 dataset show that our proposed method outperforms the current state-of-the-art method by 6.3% in Mix-F1 score on average. Moreover, we achieve SOTA performance in all domains of the DuEE dataset.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 1\",\"pages\":\"Article 103901\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002607\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002607","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

跨域事件检测面临着数据稀缺的显著挑战,现有的 "几发 "算法只考虑预定义类型的事件,导致覆盖率低或识别结果过于琐碎。为解决这一问题,本文提出了 "少量跨域事件发现 "任务,其中包括两个子任务:域事件发现和少量域适应。前者旨在识别类型无关的事件触发器,后者只需少量注释域样本即可完成域适应。此外,我们还为这两个子任务分别引入了正负平衡采样机制和新型域参数适配器。在 DuEE 数据集和 ACE2005 数据集上进行的大量实验表明,我们提出的方法在 Mix-F1 分数上平均比目前最先进的方法高出 6.3%。此外,我们还在 DuEE 数据集的所有域中实现了 SOTA 性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few-shot cross domain event discovery in narrative text
Cross-domain event detection presents notable challenges in the form of data scarcity, and existing few-shot algorithms only consider events whose types are predefined, resulting in low coverage or excessive trivial identification results. To address this issue, this paper proposes the task Few-shot Cross Domain Event Discovery, which includes two subtasks: Domain Event Discovery and Few-shot Domain Adaptation. The former aims to identify the type-agnostic event triggers, and the latter completes domain adaptation with only a few annotated domain samples. Additionally, we introduce a positive–negative balanced sampling mechanism and a novel domain parameter adapter for these two subtasks, respectively. Extensive experiments on the DuEE dataset and the ACE2005 dataset show that our proposed method outperforms the current state-of-the-art method by 6.3% in Mix-F1 score on average. Moreover, we achieve SOTA performance in all domains of the DuEE dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信