Vladimir Sladek*, Polina V. Artiushenko and Dmitri G. Fedorov,
{"title":"多子系统生物分子复合物中的直接相互作用和水介导相互作用对热点识别的影响","authors":"Vladimir Sladek*, Polina V. Artiushenko and Dmitri G. Fedorov, ","doi":"10.1021/acs.jcim.4c0097310.1021/acs.jcim.4c00973","DOIUrl":null,"url":null,"abstract":"<p >Identification of important residues in biochemical complexes is often a crucial step for many problems in molecular biology and biochemistry. A method is proposed to identify hotspots in biomolecular complexes based on a new metric, derived from networks representing molecular subunits (residues, bridging solvent molecules, ligands etc.) connected by interactions. A singular value decomposition of the weighted adjacency matrix is used to construct a scalar rank for each subunit that reflects its importance in the residue interaction network. This metric is called the singular value centrality. In addition, a new formalism is proposed to account for water-mediated interactions in the ranking of residues. Interactions for a residue network can be provided by various computational methods. In this work interactions are obtained from full quantum-mechanical calculations of protein–protein complexes using the fragment molecular orbital method. The ranking results are shown to be in good agreement with earlier computational and experimental studies. The developed method can be used to gain a deeper insight into the role of subunits in complex biomolecular systems.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 19","pages":"7602–7615 7602–7615"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Direct and Water-Mediated Interactions on the Identification of Hotspots in Biomolecular Complexes with Multiple Subsystems\",\"authors\":\"Vladimir Sladek*, Polina V. Artiushenko and Dmitri G. Fedorov, \",\"doi\":\"10.1021/acs.jcim.4c0097310.1021/acs.jcim.4c00973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Identification of important residues in biochemical complexes is often a crucial step for many problems in molecular biology and biochemistry. A method is proposed to identify hotspots in biomolecular complexes based on a new metric, derived from networks representing molecular subunits (residues, bridging solvent molecules, ligands etc.) connected by interactions. A singular value decomposition of the weighted adjacency matrix is used to construct a scalar rank for each subunit that reflects its importance in the residue interaction network. This metric is called the singular value centrality. In addition, a new formalism is proposed to account for water-mediated interactions in the ranking of residues. Interactions for a residue network can be provided by various computational methods. In this work interactions are obtained from full quantum-mechanical calculations of protein–protein complexes using the fragment molecular orbital method. The ranking results are shown to be in good agreement with earlier computational and experimental studies. The developed method can be used to gain a deeper insight into the role of subunits in complex biomolecular systems.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 19\",\"pages\":\"7602–7615 7602–7615\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00973\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00973","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Effect of Direct and Water-Mediated Interactions on the Identification of Hotspots in Biomolecular Complexes with Multiple Subsystems
Identification of important residues in biochemical complexes is often a crucial step for many problems in molecular biology and biochemistry. A method is proposed to identify hotspots in biomolecular complexes based on a new metric, derived from networks representing molecular subunits (residues, bridging solvent molecules, ligands etc.) connected by interactions. A singular value decomposition of the weighted adjacency matrix is used to construct a scalar rank for each subunit that reflects its importance in the residue interaction network. This metric is called the singular value centrality. In addition, a new formalism is proposed to account for water-mediated interactions in the ranking of residues. Interactions for a residue network can be provided by various computational methods. In this work interactions are obtained from full quantum-mechanical calculations of protein–protein complexes using the fragment molecular orbital method. The ranking results are shown to be in good agreement with earlier computational and experimental studies. The developed method can be used to gain a deeper insight into the role of subunits in complex biomolecular systems.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.