纳米立方氧化铜的结构和组成变化在硝酸盐电还原成氨中的作用

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Igor Messias, Manuel E. G. Winkler, Gabriel F. Costa, Thiago Mariano, João Batista Souza Junior, Itamar Tomio Neckel, Marta C. Figueiredo, Nirala Singh and Raphael Nagao*, 
{"title":"纳米立方氧化铜的结构和组成变化在硝酸盐电还原成氨中的作用","authors":"Igor Messias,&nbsp;Manuel E. G. Winkler,&nbsp;Gabriel F. Costa,&nbsp;Thiago Mariano,&nbsp;João Batista Souza Junior,&nbsp;Itamar Tomio Neckel,&nbsp;Marta C. Figueiredo,&nbsp;Nirala Singh and Raphael Nagao*,&nbsp;","doi":"10.1021/acsaem.4c0232610.1021/acsaem.4c02326","DOIUrl":null,"url":null,"abstract":"<p >Nitrate electroreduction reaction (NO<sub>3</sub>RR) to ammonia (NH<sub>3</sub>) still faces fundamental and technological challenges. While Cu-based catalysts have been widely explored, their activity and stability relationship are still not fully understood. Here, we systematically monitored the dynamic alterations in the chemical and morphological characteristics of Cu<sub>2</sub>O nanocubes (NCs) during NO<sub>3</sub>RR in an alkaline electrolyte. In 1 h of electrolysis from −0.10 to −0.60 V vs RHE, the electrocatalyst achieved the maximum NH<sub>3</sub> faradaic efficiency (FE) and yield rate at −0.3 V (94% and 149 μmol h<sup>–1</sup> cm<sup>–2</sup>, respectively). Similar efficiency could be found at a lower overpotential (−0.20 V vs RHE) in long-term electrolysis. At −0.20 V vs RHE, the catalyst FE increased from 73% in the first 2 h to ∼90% in 10 h of electrolysis. Electron microscopy revealed the loss of the cubic shape with the formation of sintered domains. <i>In situ</i> Raman, X-ray diffraction (XRD), and <i>in situ</i> Cu K-edge X-ray absorption near-edge spectroscopy (XANES) indicated the reduction of Cu<sub>2</sub>O to oxide-derived Cu<sup>0</sup> (OD-Cu). Nevertheless, a remaining Cu<sub>2</sub>O phase was noticed after 1 h of electrolysis at −0.3 V vs RHE. This observation indicates that the activity and selectivity of the initially well-defined Cu<sub>2</sub>O NCs are not solely dependent on the initial structure. Instead, it underscores the emergence of an OD-Cu-rich surface, evolving from near-surface to underlying layers over time and playing a crucial role in the reaction pathways. By employing <i>online</i> differential electrochemical mass spectrometry (DEMS) and <i>in situ</i> Fourier transform infrared spectroscopy (FTIR), we experimentally probed the presence of key intermediates (NO and NH<sub>2</sub>OH) and byproducts of NO<sub>3</sub>RR (N<sub>2</sub> and N<sub>2</sub>H<sub><i>x</i></sub>) for NH<sub>3</sub> formation. These results show a complex relationship between activity and stability of the nanostructured Cu<sub>2</sub>O oxide catalyst for NO<sub>3</sub>RR.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02326","citationCount":"0","resultStr":"{\"title\":\"Role of Structural and Compositional Changes of Cu2O Nanocubes in Nitrate Electroreduction to Ammonia\",\"authors\":\"Igor Messias,&nbsp;Manuel E. G. Winkler,&nbsp;Gabriel F. Costa,&nbsp;Thiago Mariano,&nbsp;João Batista Souza Junior,&nbsp;Itamar Tomio Neckel,&nbsp;Marta C. Figueiredo,&nbsp;Nirala Singh and Raphael Nagao*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0232610.1021/acsaem.4c02326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nitrate electroreduction reaction (NO<sub>3</sub>RR) to ammonia (NH<sub>3</sub>) still faces fundamental and technological challenges. While Cu-based catalysts have been widely explored, their activity and stability relationship are still not fully understood. Here, we systematically monitored the dynamic alterations in the chemical and morphological characteristics of Cu<sub>2</sub>O nanocubes (NCs) during NO<sub>3</sub>RR in an alkaline electrolyte. In 1 h of electrolysis from −0.10 to −0.60 V vs RHE, the electrocatalyst achieved the maximum NH<sub>3</sub> faradaic efficiency (FE) and yield rate at −0.3 V (94% and 149 μmol h<sup>–1</sup> cm<sup>–2</sup>, respectively). Similar efficiency could be found at a lower overpotential (−0.20 V vs RHE) in long-term electrolysis. At −0.20 V vs RHE, the catalyst FE increased from 73% in the first 2 h to ∼90% in 10 h of electrolysis. Electron microscopy revealed the loss of the cubic shape with the formation of sintered domains. <i>In situ</i> Raman, X-ray diffraction (XRD), and <i>in situ</i> Cu K-edge X-ray absorption near-edge spectroscopy (XANES) indicated the reduction of Cu<sub>2</sub>O to oxide-derived Cu<sup>0</sup> (OD-Cu). Nevertheless, a remaining Cu<sub>2</sub>O phase was noticed after 1 h of electrolysis at −0.3 V vs RHE. This observation indicates that the activity and selectivity of the initially well-defined Cu<sub>2</sub>O NCs are not solely dependent on the initial structure. Instead, it underscores the emergence of an OD-Cu-rich surface, evolving from near-surface to underlying layers over time and playing a crucial role in the reaction pathways. By employing <i>online</i> differential electrochemical mass spectrometry (DEMS) and <i>in situ</i> Fourier transform infrared spectroscopy (FTIR), we experimentally probed the presence of key intermediates (NO and NH<sub>2</sub>OH) and byproducts of NO<sub>3</sub>RR (N<sub>2</sub> and N<sub>2</sub>H<sub><i>x</i></sub>) for NH<sub>3</sub> formation. These results show a complex relationship between activity and stability of the nanostructured Cu<sub>2</sub>O oxide catalyst for NO<sub>3</sub>RR.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02326\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02326\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02326","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硝酸盐电还原反应(NO3RR)制氨(NH3)仍然面临着基础和技术上的挑战。虽然铜基催化剂已被广泛探索,但人们对其活性和稳定性的关系仍不完全了解。在此,我们系统地监测了 Cu2O 纳米立方体(NCs)在碱性电解液中进行 NO3RR 反应时化学和形态特征的动态变化。在 -0.10 至 -0.60 V 对 RHE 的 1 小时电解过程中,电催化剂在 -0.3 V 时达到了最大的 NH3 法拉效率(FE)和产率(分别为 94% 和 149 μmol h-1 cm-2)。在长期电解过程中,在较低的过电位(-0.20 V 对 RHE)下也能获得类似的效率。在 -0.20 V 相对于 RHE 条件下,催化剂 FE 从最初 2 小时的 73% 增加到电解 10 小时后的 90%。电子显微镜显示,随着烧结畴的形成,立方体形状消失了。原位拉曼、X 射线衍射 (XRD) 和原位铜 K 边 X 射线吸收近边光谱 (XANES) 显示,Cu2O 被还原成氧化物衍生的 Cu0 (OD-Cu)。然而,在 -0.3 V 对 RHE 的电压下电解 1 小时后,发现仍有剩余的 Cu2O 相。这一观察结果表明,最初定义明确的 Cu2O NCs 的活性和选择性并不完全取决于初始结构。相反,它强调了富含 OD-Cu 的表面的出现,这种表面随着时间的推移从近表面向底层演化,并在反应途径中发挥了关键作用。通过采用在线差分电化学质谱法 (DEMS) 和原位傅立叶变换红外光谱法 (FTIR),我们在实验中探测了形成 NH3 的关键中间产物(NO 和 NH2OH)和 NO3RR 副产物(N2 和 N2Hx)的存在。这些结果表明,NO3RR 纳米结构氧化铜催化剂的活性和稳定性之间存在复杂的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Structural and Compositional Changes of Cu2O Nanocubes in Nitrate Electroreduction to Ammonia

Nitrate electroreduction reaction (NO3RR) to ammonia (NH3) still faces fundamental and technological challenges. While Cu-based catalysts have been widely explored, their activity and stability relationship are still not fully understood. Here, we systematically monitored the dynamic alterations in the chemical and morphological characteristics of Cu2O nanocubes (NCs) during NO3RR in an alkaline electrolyte. In 1 h of electrolysis from −0.10 to −0.60 V vs RHE, the electrocatalyst achieved the maximum NH3 faradaic efficiency (FE) and yield rate at −0.3 V (94% and 149 μmol h–1 cm–2, respectively). Similar efficiency could be found at a lower overpotential (−0.20 V vs RHE) in long-term electrolysis. At −0.20 V vs RHE, the catalyst FE increased from 73% in the first 2 h to ∼90% in 10 h of electrolysis. Electron microscopy revealed the loss of the cubic shape with the formation of sintered domains. In situ Raman, X-ray diffraction (XRD), and in situ Cu K-edge X-ray absorption near-edge spectroscopy (XANES) indicated the reduction of Cu2O to oxide-derived Cu0 (OD-Cu). Nevertheless, a remaining Cu2O phase was noticed after 1 h of electrolysis at −0.3 V vs RHE. This observation indicates that the activity and selectivity of the initially well-defined Cu2O NCs are not solely dependent on the initial structure. Instead, it underscores the emergence of an OD-Cu-rich surface, evolving from near-surface to underlying layers over time and playing a crucial role in the reaction pathways. By employing online differential electrochemical mass spectrometry (DEMS) and in situ Fourier transform infrared spectroscopy (FTIR), we experimentally probed the presence of key intermediates (NO and NH2OH) and byproducts of NO3RR (N2 and N2Hx) for NH3 formation. These results show a complex relationship between activity and stability of the nanostructured Cu2O oxide catalyst for NO3RR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信