{"title":"利用分层导航小世界进行检索增强对接","authors":"Brendan W. Hall, and , Michael J. Keiser*, ","doi":"10.1021/acs.jcim.4c0068310.1021/acs.jcim.4c00683","DOIUrl":null,"url":null,"abstract":"<p >Make-on-demand chemical libraries have drastically increased the reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in better-scoring molecules, the computational resources required to dock all of ZINC-22 make this endeavor infeasible for most. Here, we organize and traverse chemical space with hierarchical navigable small-world graphs, a method we term retrieval augmented docking (RAD). RAD recovers most virtual actives, despite docking only a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional docking campaigns without additional computational overhead. In depth, we assess RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules, respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of virtual actives while docking 10% of the library without sacrificing chemical diversity.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 19","pages":"7398–7408 7398–7408"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c00683","citationCount":"0","resultStr":"{\"title\":\"Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds\",\"authors\":\"Brendan W. Hall, and , Michael J. Keiser*, \",\"doi\":\"10.1021/acs.jcim.4c0068310.1021/acs.jcim.4c00683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Make-on-demand chemical libraries have drastically increased the reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in better-scoring molecules, the computational resources required to dock all of ZINC-22 make this endeavor infeasible for most. Here, we organize and traverse chemical space with hierarchical navigable small-world graphs, a method we term retrieval augmented docking (RAD). RAD recovers most virtual actives, despite docking only a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional docking campaigns without additional computational overhead. In depth, we assess RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules, respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of virtual actives while docking 10% of the library without sacrificing chemical diversity.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 19\",\"pages\":\"7398–7408 7398–7408\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c00683\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds
Make-on-demand chemical libraries have drastically increased the reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in better-scoring molecules, the computational resources required to dock all of ZINC-22 make this endeavor infeasible for most. Here, we organize and traverse chemical space with hierarchical navigable small-world graphs, a method we term retrieval augmented docking (RAD). RAD recovers most virtual actives, despite docking only a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional docking campaigns without additional computational overhead. In depth, we assess RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules, respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of virtual actives while docking 10% of the library without sacrificing chemical diversity.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.