利用分层导航小世界进行检索增强对接

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Brendan W. Hall,  and , Michael J. Keiser*, 
{"title":"利用分层导航小世界进行检索增强对接","authors":"Brendan W. Hall,&nbsp; and ,&nbsp;Michael J. Keiser*,&nbsp;","doi":"10.1021/acs.jcim.4c0068310.1021/acs.jcim.4c00683","DOIUrl":null,"url":null,"abstract":"<p >Make-on-demand chemical libraries have drastically increased the reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in better-scoring molecules, the computational resources required to dock all of ZINC-22 make this endeavor infeasible for most. Here, we organize and traverse chemical space with hierarchical navigable small-world graphs, a method we term retrieval augmented docking (RAD). RAD recovers most virtual actives, despite docking only a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional docking campaigns without additional computational overhead. In depth, we assess RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules, respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of virtual actives while docking 10% of the library without sacrificing chemical diversity.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 19","pages":"7398–7408 7398–7408"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c00683","citationCount":"0","resultStr":"{\"title\":\"Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds\",\"authors\":\"Brendan W. Hall,&nbsp; and ,&nbsp;Michael J. Keiser*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.4c0068310.1021/acs.jcim.4c00683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Make-on-demand chemical libraries have drastically increased the reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in better-scoring molecules, the computational resources required to dock all of ZINC-22 make this endeavor infeasible for most. Here, we organize and traverse chemical space with hierarchical navigable small-world graphs, a method we term retrieval augmented docking (RAD). RAD recovers most virtual actives, despite docking only a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional docking campaigns without additional computational overhead. In depth, we assess RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules, respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of virtual actives while docking 10% of the library without sacrificing chemical diversity.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 19\",\"pages\":\"7398–7408 7398–7408\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c00683\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

按需制造的化学库极大地扩展了分子对接的范围,已枚举的可对接 ZINC-22 化学库已接近 64 亿个分子(2024 年 7 月)。虽然不断扩大的分子库会带来得分更高的分子,但对接所有 ZINC-22 所需的计算资源使大多数人无法完成这项工作。在这里,我们用分层导航的小世界图来组织和穿越化学空间,我们称这种方法为检索增强对接(RAD)。尽管只对接了库中的一小部分,RAD 仍能回收大多数虚拟活性物质。此外,RAD 与蛋白质无关,可支持额外的对接活动,而无需额外的计算开销。我们在已发表的针对 D4 和 AmpC 的大规模对接活动中对 RAD 进行了深入评估,这些对接活动分别涉及 9,950 万和 1.38 亿个分子。RAD 仅评估了 10% 的库,就为这两个靶标恢复了 95% 的 DOCK 虚拟活性。在广度上,RAD 对 43 个 DUDE-Z 蛋白质显示出广泛的适用性,评估了 5030 万个关联。平均而言,RAD 在不牺牲化学多样性的情况下,在对接 10%的库的同时,回收了 87% 的虚拟活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds

Make-on-demand chemical libraries have drastically increased the reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in better-scoring molecules, the computational resources required to dock all of ZINC-22 make this endeavor infeasible for most. Here, we organize and traverse chemical space with hierarchical navigable small-world graphs, a method we term retrieval augmented docking (RAD). RAD recovers most virtual actives, despite docking only a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional docking campaigns without additional computational overhead. In depth, we assess RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules, respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of virtual actives while docking 10% of the library without sacrificing chemical diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信