三维肿瘤模型在乳腺癌中的应用和进展

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiaojiao Xu, Wanxia Fang, Huanhuan Zhou, Ruiyuan Jiang, Zhanhong Chen, Xiaojia Wang
{"title":"三维肿瘤模型在乳腺癌中的应用和进展","authors":"Jiaojiao Xu, Wanxia Fang, Huanhuan Zhou, Ruiyuan Jiang, Zhanhong Chen, Xiaojia Wang","doi":"10.1002/bit.28860","DOIUrl":null,"url":null,"abstract":"Due to its high heterogeneity and significant impact on women's health globally, breast cancer necessitates robust preclinical models to understand tumor biology and guide personalized treatment strategies. Three-dimensional (3D) in vitro tumor models hold immense promise in this regard. These tumor models not only mimic the spatial structure and growth environment of tumors in vivo, but also retain the pathological and genetic characteristics of solid tumors. This fidelity makes them powerful tools for accelerating advancements in fundamental research and translational medicine. The diversity, modularity, and efficacy of 3D tumor models are driving a biotechnological revolution. As these technologies become increasingly sophisticated, 3D tumor models are poised to become powerful weapons in the fight against breast cancer. This article expounds on the progress made in utilizing 3D tumor models for breast cancer research.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"6 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application and progress of 3D tumor models in breast cancer\",\"authors\":\"Jiaojiao Xu, Wanxia Fang, Huanhuan Zhou, Ruiyuan Jiang, Zhanhong Chen, Xiaojia Wang\",\"doi\":\"10.1002/bit.28860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its high heterogeneity and significant impact on women's health globally, breast cancer necessitates robust preclinical models to understand tumor biology and guide personalized treatment strategies. Three-dimensional (3D) in vitro tumor models hold immense promise in this regard. These tumor models not only mimic the spatial structure and growth environment of tumors in vivo, but also retain the pathological and genetic characteristics of solid tumors. This fidelity makes them powerful tools for accelerating advancements in fundamental research and translational medicine. The diversity, modularity, and efficacy of 3D tumor models are driving a biotechnological revolution. As these technologies become increasingly sophisticated, 3D tumor models are poised to become powerful weapons in the fight against breast cancer. This article expounds on the progress made in utilizing 3D tumor models for breast cancer research.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.28860\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28860","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于乳腺癌的高度异质性和对全球妇女健康的重大影响,需要建立强大的临床前模型来了解肿瘤生物学并指导个性化治疗策略。三维体外肿瘤模型在这方面大有可为。这些肿瘤模型不仅模仿了体内肿瘤的空间结构和生长环境,还保留了实体瘤的病理和遗传特征。这种逼真性使它们成为加快基础研究和转化医学进展的有力工具。三维肿瘤模型的多样性、模块化和有效性正在推动一场生物技术革命。随着这些技术的日益成熟,三维肿瘤模型有望成为抗击乳腺癌的有力武器。本文阐述了利用三维肿瘤模型进行乳腺癌研究的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application and progress of 3D tumor models in breast cancer

Application and progress of 3D tumor models in breast cancer
Due to its high heterogeneity and significant impact on women's health globally, breast cancer necessitates robust preclinical models to understand tumor biology and guide personalized treatment strategies. Three-dimensional (3D) in vitro tumor models hold immense promise in this regard. These tumor models not only mimic the spatial structure and growth environment of tumors in vivo, but also retain the pathological and genetic characteristics of solid tumors. This fidelity makes them powerful tools for accelerating advancements in fundamental research and translational medicine. The diversity, modularity, and efficacy of 3D tumor models are driving a biotechnological revolution. As these technologies become increasingly sophisticated, 3D tumor models are poised to become powerful weapons in the fight against breast cancer. This article expounds on the progress made in utilizing 3D tumor models for breast cancer research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信