Katherine M. Sheu, Aditya Pimplaskar, Alexander Hoffmann
{"title":"单细胞刺激-反应基因表达轨迹揭示了单个巨噬细胞动态反应的刺激特异性","authors":"Katherine M. Sheu, Aditya Pimplaskar, Alexander Hoffmann","doi":"10.1016/j.molcel.2024.09.023","DOIUrl":null,"url":null,"abstract":"Macrophages induce the expression of hundreds of genes in response to immune threats. However, current technology limits our ability to capture single-cell inducible gene expression dynamics. Here, we generated high-resolution time series single-cell RNA sequencing (scRNA-seq) data from mouse macrophages responding to six stimuli, and imputed ensembles of real-time single-cell gene expression trajectories (scGETs). We found that dynamic information contained in scGETs substantially contributes to macrophage stimulus-response specificity (SRS). Dynamic information also identified correlations between immune response genes, indicating biological coordination. Furthermore, we showed that the microenvironmental context of polarizing cytokines profoundly affects scGETs, such that measuring response dynamics offered clearer discrimination of the polarization state of individual macrophage cells than single time-point measurements. Our findings highlight the important contribution of dynamic information contained in the single-cell expression responses of immune genes in characterizing the SRS and functional states of macrophages.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell stimulus-response gene expression trajectories reveal the stimulus specificities of dynamic responses by single macrophages\",\"authors\":\"Katherine M. Sheu, Aditya Pimplaskar, Alexander Hoffmann\",\"doi\":\"10.1016/j.molcel.2024.09.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macrophages induce the expression of hundreds of genes in response to immune threats. However, current technology limits our ability to capture single-cell inducible gene expression dynamics. Here, we generated high-resolution time series single-cell RNA sequencing (scRNA-seq) data from mouse macrophages responding to six stimuli, and imputed ensembles of real-time single-cell gene expression trajectories (scGETs). We found that dynamic information contained in scGETs substantially contributes to macrophage stimulus-response specificity (SRS). Dynamic information also identified correlations between immune response genes, indicating biological coordination. Furthermore, we showed that the microenvironmental context of polarizing cytokines profoundly affects scGETs, such that measuring response dynamics offered clearer discrimination of the polarization state of individual macrophage cells than single time-point measurements. Our findings highlight the important contribution of dynamic information contained in the single-cell expression responses of immune genes in characterizing the SRS and functional states of macrophages.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.09.023\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.09.023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-cell stimulus-response gene expression trajectories reveal the stimulus specificities of dynamic responses by single macrophages
Macrophages induce the expression of hundreds of genes in response to immune threats. However, current technology limits our ability to capture single-cell inducible gene expression dynamics. Here, we generated high-resolution time series single-cell RNA sequencing (scRNA-seq) data from mouse macrophages responding to six stimuli, and imputed ensembles of real-time single-cell gene expression trajectories (scGETs). We found that dynamic information contained in scGETs substantially contributes to macrophage stimulus-response specificity (SRS). Dynamic information also identified correlations between immune response genes, indicating biological coordination. Furthermore, we showed that the microenvironmental context of polarizing cytokines profoundly affects scGETs, such that measuring response dynamics offered clearer discrimination of the polarization state of individual macrophage cells than single time-point measurements. Our findings highlight the important contribution of dynamic information contained in the single-cell expression responses of immune genes in characterizing the SRS and functional states of macrophages.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.