{"title":"RNA 甲基化酶 RBM15 通过依赖 m6A 修饰的方式调节 E2F2,促进结直肠癌的恶性发展","authors":"Huijun Zhang, Yuanyuan Li, Ying Zhou, Qihua Xu, Bingling Liao, Xiaofeng Qiu, Jianfeng Liu","doi":"10.1002/jbt.70014","DOIUrl":null,"url":null,"abstract":"<p>Recently, RBM15 has emerged as an oncogenic factor in a majority of tumors. However, the mechanism is unclear that accounts for how RBM15-induces colorectal cancer (CRC) progression and it is in need of further study. We determined RBM15 expression through the UALCAN database and RT-qPCR. The role of RBM15 in inducing the malignant and aggressive cancerous phenotype was characterized based on the results of the western blot, RT-qPCR, CCK-8 and transwell assays. The target genes of RBM15 were screened by LinkedOmics. m6A methylation kit was applied to analyze the methylation levels of mRNA. SRAMP website was employed to predict m6A sites of targeted mRNA. RIP, dual luciferase reporter gene and actinomycin D assay were conducted to verify the interactions between RBM15 and its targeted gene, and the presence of m6A modification site of its targeted mRNA, respectively. We confirmed the augmentation of RBM15 expression in CRC, which also has a high clinical diagnostic value for CRC. Functionally, RBM15 silencing clearly restrained malignant cellular processes in CRC cells. Mechanistically, RBM15 bound to E2F2 which increased its m6A binding and stabilized the corresponding E2F2 mRNA formation. Excessive E2F2 largely restored the repression malignant phenotype of tumor cells caused by RBM15 silencing. RBM15 regulated E2F2 in an m6A modification-dependent manner thereby boosting malignant cellular processes in CRC. The RBM15/E2F2 axis may be a novel target for CRC therapy.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA methylase RBM15 facilitates malignant progression of colorectal cancer through regulating E2F2 in an m6A modification-dependent manner\",\"authors\":\"Huijun Zhang, Yuanyuan Li, Ying Zhou, Qihua Xu, Bingling Liao, Xiaofeng Qiu, Jianfeng Liu\",\"doi\":\"10.1002/jbt.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, RBM15 has emerged as an oncogenic factor in a majority of tumors. However, the mechanism is unclear that accounts for how RBM15-induces colorectal cancer (CRC) progression and it is in need of further study. We determined RBM15 expression through the UALCAN database and RT-qPCR. The role of RBM15 in inducing the malignant and aggressive cancerous phenotype was characterized based on the results of the western blot, RT-qPCR, CCK-8 and transwell assays. The target genes of RBM15 were screened by LinkedOmics. m6A methylation kit was applied to analyze the methylation levels of mRNA. SRAMP website was employed to predict m6A sites of targeted mRNA. RIP, dual luciferase reporter gene and actinomycin D assay were conducted to verify the interactions between RBM15 and its targeted gene, and the presence of m6A modification site of its targeted mRNA, respectively. We confirmed the augmentation of RBM15 expression in CRC, which also has a high clinical diagnostic value for CRC. Functionally, RBM15 silencing clearly restrained malignant cellular processes in CRC cells. Mechanistically, RBM15 bound to E2F2 which increased its m6A binding and stabilized the corresponding E2F2 mRNA formation. Excessive E2F2 largely restored the repression malignant phenotype of tumor cells caused by RBM15 silencing. RBM15 regulated E2F2 in an m6A modification-dependent manner thereby boosting malignant cellular processes in CRC. The RBM15/E2F2 axis may be a novel target for CRC therapy.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70014\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RNA methylase RBM15 facilitates malignant progression of colorectal cancer through regulating E2F2 in an m6A modification-dependent manner
Recently, RBM15 has emerged as an oncogenic factor in a majority of tumors. However, the mechanism is unclear that accounts for how RBM15-induces colorectal cancer (CRC) progression and it is in need of further study. We determined RBM15 expression through the UALCAN database and RT-qPCR. The role of RBM15 in inducing the malignant and aggressive cancerous phenotype was characterized based on the results of the western blot, RT-qPCR, CCK-8 and transwell assays. The target genes of RBM15 were screened by LinkedOmics. m6A methylation kit was applied to analyze the methylation levels of mRNA. SRAMP website was employed to predict m6A sites of targeted mRNA. RIP, dual luciferase reporter gene and actinomycin D assay were conducted to verify the interactions between RBM15 and its targeted gene, and the presence of m6A modification site of its targeted mRNA, respectively. We confirmed the augmentation of RBM15 expression in CRC, which also has a high clinical diagnostic value for CRC. Functionally, RBM15 silencing clearly restrained malignant cellular processes in CRC cells. Mechanistically, RBM15 bound to E2F2 which increased its m6A binding and stabilized the corresponding E2F2 mRNA formation. Excessive E2F2 largely restored the repression malignant phenotype of tumor cells caused by RBM15 silencing. RBM15 regulated E2F2 in an m6A modification-dependent manner thereby boosting malignant cellular processes in CRC. The RBM15/E2F2 axis may be a novel target for CRC therapy.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.