圆上布森斯方程的拉克斯对中的(L)-操作者的逆问题

IF 0.6 4区 数学 Q3 MATHEMATICS
Andrey Badanin, Evgeny Korotyaev
{"title":"圆上布森斯方程的拉克斯对中的(L)-操作者的逆问题","authors":"Andrey Badanin,&nbsp;Evgeny Korotyaev","doi":"10.1134/S0016266324030092","DOIUrl":null,"url":null,"abstract":"<p> We consider a third-order non-self-adjoint operator which is an <span>\\(L\\)</span>-operator in the Lax pair for the Boussinesq equation on the circle. We construct a mapping from the set of operator coefficients to the set of spectral data, similar to the corresponding mapping for the Hill operator constructed by E. Korotyaev. We prove that, in a neighborhood of zero, our mapping is analytic and one-to-one. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 3","pages":"340 - 343"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Problem for the \\\\(L\\\\)-Operator in the Lax Pair of the Boussinesq Equation on the Circle\",\"authors\":\"Andrey Badanin,&nbsp;Evgeny Korotyaev\",\"doi\":\"10.1134/S0016266324030092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider a third-order non-self-adjoint operator which is an <span>\\\\(L\\\\)</span>-operator in the Lax pair for the Boussinesq equation on the circle. We construct a mapping from the set of operator coefficients to the set of spectral data, similar to the corresponding mapping for the Hill operator constructed by E. Korotyaev. We prove that, in a neighborhood of zero, our mapping is analytic and one-to-one. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"58 3\",\"pages\":\"340 - 343\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324030092\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324030092","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个三阶非自交算子,它是圆上布森斯克方程的拉克斯对中的(L)算子。我们构建了一个从算子系数集到谱数据集的映射,类似于 E. Korotyaev 为希尔算子构建的相应映射。我们证明,在零邻域,我们的映射是解析的、一一对应的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Problem for the \(L\)-Operator in the Lax Pair of the Boussinesq Equation on the Circle

We consider a third-order non-self-adjoint operator which is an \(L\)-operator in the Lax pair for the Boussinesq equation on the circle. We construct a mapping from the set of operator coefficients to the set of spectral data, similar to the corresponding mapping for the Hill operator constructed by E. Korotyaev. We prove that, in a neighborhood of zero, our mapping is analytic and one-to-one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信