论变分法一类矢量积分函数最小值的局部无处不在的荷尔德连续性

IF 0.6 4区 数学 Q3 MATHEMATICS
Tiziano Granuzzi
{"title":"论变分法一类矢量积分函数最小值的局部无处不在的荷尔德连续性","authors":"Tiziano Granuzzi","doi":"10.1134/S0016266324030031","DOIUrl":null,"url":null,"abstract":"<p> In this paper we study the everywhere Hölder continuity of the minima of the following class of vectorial integral funcionals: </p><p> with some general conditions on the density <span>\\(G\\)</span>. </p><p> We make the following assumptions about the function <span>\\(G\\)</span>. Let <span>\\(\\Omega\\)</span> be a bounded open subset of <span>\\(\\mathbb{R}^{n}\\)</span>, with <span>\\(n\\geq 2\\)</span>, and let <span>\\(G \\colon \\Omega \\times\\mathbb{R}^{m}\\times\\mathbb{R}_{0,+}^{m}\\to \\mathbb{R}\\)</span> be a Carathéodory function, where <span>\\(\\mathbb{R}_{0,+}=[0,+\\infty)\\)</span> and <span>\\(\\mathbb{R} _{0,+}^{m}=\\mathbb{R}_{0,+}\\times \\dots \\times\\mathbb{R}_{0,+}\\)</span> with <span>\\(m\\geq 1\\)</span>. We make the following growth conditions on <span>\\(G\\)</span>: there exists a constant <span>\\(L&gt;1\\)</span> such that </p><p> for <span>\\(\\mathcal{L}^{n}\\)</span> a.e. <span>\\(x\\in \\Omega \\)</span>, for every <span>\\(s^{\\alpha}\\in \\mathbb{R}\\)</span> and every <span>\\(\\xi^{\\alpha}\\in\\mathbb{R}\\)</span> with <span>\\(\\alpha=1,\\dots,m\\)</span>, <span>\\(m\\geq 1\\)</span> and with <span>\\(a(x) \\in L^{\\sigma}(\\Omega)\\)</span>, <span>\\(a(x)\\geq 0\\)</span> for <span>\\(\\mathcal{L}^{n}\\)</span> a.e. <span>\\(x\\in \\Omega\\)</span>, <span>\\(\\sigma &gt;{n}/{p}\\)</span>, <span>\\(1\\leq q&lt;{p^{2}}/{n}\\)</span> and <span>\\(1&lt;p&lt;n\\)</span>. </p><p> Assuming that the previous growth hypothesis holds, we prove the following regularity result. If <span>\\(u\\,{\\in}\\, W^{1,p}(\\Omega,\\mathbb{R}^{m})\\)</span> is a local minimizer of the previous functional, then <span>\\(u^{\\alpha}\\in C_{\\mathrm{loc}}^{o,\\beta_{0}}(\\Omega) \\)</span> for every <span>\\(\\alpha=1,\\dots,m\\)</span>, with <span>\\(\\beta_{0}\\in (0,1) \\)</span>. The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude Hölder continuity. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 3","pages":"251 - 267"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Local Everywhere Hölder Continuity of the Minima of a Class of Vectorial Integral Functionals of the Calculus of Variations\",\"authors\":\"Tiziano Granuzzi\",\"doi\":\"10.1134/S0016266324030031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this paper we study the everywhere Hölder continuity of the minima of the following class of vectorial integral funcionals: </p><p> with some general conditions on the density <span>\\\\(G\\\\)</span>. </p><p> We make the following assumptions about the function <span>\\\\(G\\\\)</span>. Let <span>\\\\(\\\\Omega\\\\)</span> be a bounded open subset of <span>\\\\(\\\\mathbb{R}^{n}\\\\)</span>, with <span>\\\\(n\\\\geq 2\\\\)</span>, and let <span>\\\\(G \\\\colon \\\\Omega \\\\times\\\\mathbb{R}^{m}\\\\times\\\\mathbb{R}_{0,+}^{m}\\\\to \\\\mathbb{R}\\\\)</span> be a Carathéodory function, where <span>\\\\(\\\\mathbb{R}_{0,+}=[0,+\\\\infty)\\\\)</span> and <span>\\\\(\\\\mathbb{R} _{0,+}^{m}=\\\\mathbb{R}_{0,+}\\\\times \\\\dots \\\\times\\\\mathbb{R}_{0,+}\\\\)</span> with <span>\\\\(m\\\\geq 1\\\\)</span>. We make the following growth conditions on <span>\\\\(G\\\\)</span>: there exists a constant <span>\\\\(L&gt;1\\\\)</span> such that </p><p> for <span>\\\\(\\\\mathcal{L}^{n}\\\\)</span> a.e. <span>\\\\(x\\\\in \\\\Omega \\\\)</span>, for every <span>\\\\(s^{\\\\alpha}\\\\in \\\\mathbb{R}\\\\)</span> and every <span>\\\\(\\\\xi^{\\\\alpha}\\\\in\\\\mathbb{R}\\\\)</span> with <span>\\\\(\\\\alpha=1,\\\\dots,m\\\\)</span>, <span>\\\\(m\\\\geq 1\\\\)</span> and with <span>\\\\(a(x) \\\\in L^{\\\\sigma}(\\\\Omega)\\\\)</span>, <span>\\\\(a(x)\\\\geq 0\\\\)</span> for <span>\\\\(\\\\mathcal{L}^{n}\\\\)</span> a.e. <span>\\\\(x\\\\in \\\\Omega\\\\)</span>, <span>\\\\(\\\\sigma &gt;{n}/{p}\\\\)</span>, <span>\\\\(1\\\\leq q&lt;{p^{2}}/{n}\\\\)</span> and <span>\\\\(1&lt;p&lt;n\\\\)</span>. </p><p> Assuming that the previous growth hypothesis holds, we prove the following regularity result. If <span>\\\\(u\\\\,{\\\\in}\\\\, W^{1,p}(\\\\Omega,\\\\mathbb{R}^{m})\\\\)</span> is a local minimizer of the previous functional, then <span>\\\\(u^{\\\\alpha}\\\\in C_{\\\\mathrm{loc}}^{o,\\\\beta_{0}}(\\\\Omega) \\\\)</span> for every <span>\\\\(\\\\alpha=1,\\\\dots,m\\\\)</span>, with <span>\\\\(\\\\beta_{0}\\\\in (0,1) \\\\)</span>. The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude Hölder continuity. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"58 3\",\"pages\":\"251 - 267\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324030031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324030031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了以下一类向量积分函数的最小值的遍地霍尔德连续性:在密度 \(G\)上有一些一般条件。 我们对函数 \(G\) 做如下假设。让 \(\Omega\) 是 \(\mathbb{R}^{n}\) 的有界开放子集,并且让 \(G \colon \Omega \times\mathbb{R}^{m}\times\mathbb{R}_{0、+}^{m}\to \mathbb{R}) 是一个卡拉瑟奥多里函数,其中 \(\mathbb{R}_{0,+}=[0,+\infty)\) 和 \(\mathbb{R} _{0,+}^{m}=\mathbb{R}_{0,+}\times \dots \times\mathbb{R}_{0,+}\) with \(m\geq 1\).我们对\(G\)提出以下增长条件:存在一个常数\(L>1\),使得对于\(mathcal{L}^{n}\)来说,a.e.\(x在Omega中), for every \(s^{\alpha}\in \mathbb{R}\) and every \(xi^{\alpha}\in\mathbb{R}\) with \(\alpha=1、\dots,m\),\(m\geq 1\) and with \(a(x)\in L^{\sigma}(\Omega)\),\(a(x)\geq 0\) for \(\mathcal{L}^{n}\) a.e. \(x\in\Omega\),\(\sigma >{n}/{p}\),\(1\leq q<{p^{2}}/{n}\) and\(1<p<n\). 假设前面的增长假设成立,我们证明下面的正则性结果。如果 \(u\,{\in}\, W^{1,p}(\Omega,\mathbb{R}^{m})\) 是前面函数的局部最小值、then \(u^{{alpha}\in C_{{mathrm{loc}}^{o,\beta_{0}}(\Omega) \) for every \(\alpha=1,\dots,m\), with \(\beta_{0}\in (0,1) \)。通过证明每个分量都保持在一个合适的 De Giorgi 类中,我们可以得到最小量的正则性,并由此得出霍尔德连续性的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Local Everywhere Hölder Continuity of the Minima of a Class of Vectorial Integral Functionals of the Calculus of Variations

In this paper we study the everywhere Hölder continuity of the minima of the following class of vectorial integral funcionals:

with some general conditions on the density \(G\).

We make the following assumptions about the function \(G\). Let \(\Omega\) be a bounded open subset of \(\mathbb{R}^{n}\), with \(n\geq 2\), and let \(G \colon \Omega \times\mathbb{R}^{m}\times\mathbb{R}_{0,+}^{m}\to \mathbb{R}\) be a Carathéodory function, where \(\mathbb{R}_{0,+}=[0,+\infty)\) and \(\mathbb{R} _{0,+}^{m}=\mathbb{R}_{0,+}\times \dots \times\mathbb{R}_{0,+}\) with \(m\geq 1\). We make the following growth conditions on \(G\): there exists a constant \(L>1\) such that

for \(\mathcal{L}^{n}\) a.e. \(x\in \Omega \), for every \(s^{\alpha}\in \mathbb{R}\) and every \(\xi^{\alpha}\in\mathbb{R}\) with \(\alpha=1,\dots,m\), \(m\geq 1\) and with \(a(x) \in L^{\sigma}(\Omega)\), \(a(x)\geq 0\) for \(\mathcal{L}^{n}\) a.e. \(x\in \Omega\), \(\sigma >{n}/{p}\), \(1\leq q<{p^{2}}/{n}\) and \(1<p<n\).

Assuming that the previous growth hypothesis holds, we prove the following regularity result. If \(u\,{\in}\, W^{1,p}(\Omega,\mathbb{R}^{m})\) is a local minimizer of the previous functional, then \(u^{\alpha}\in C_{\mathrm{loc}}^{o,\beta_{0}}(\Omega) \) for every \(\alpha=1,\dots,m\), with \(\beta_{0}\in (0,1) \). The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude Hölder continuity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信