{"title":"平超复数无穷折线是(\\mathbb H\\ )可解的","authors":"Yulia Gorginyan","doi":"10.1134/S001626632403002X","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\mathbb H\\)</span> be a quaternion algebra generated by <span>\\(I,J\\)</span> and <span>\\(K\\)</span>. We say that a hypercomplex nilpotent Lie algebra <span>\\(\\mathfrak g\\)</span> is <span>\\(\\mathbb H\\)</span><i>-solvable</i> if there exists a sequence of <span>\\(\\mathbb H\\)</span>-invariant subalgebras containing <span>\\(\\mathfrak g_{i+1}=[\\mathfrak g_i,\\mathfrak g_i]\\)</span>, </p><p> such that <span>\\([\\mathfrak g_i^{\\mathbb H},\\mathfrak g_i^{\\mathbb H}]\\subset\\mathfrak g^{\\mathbb H}_{i+1}\\)</span> and <span>\\(\\mathfrak g_{i+1}^{\\mathbb H}=\\mathbb H[\\mathfrak g_i^{\\mathbb H},\\mathfrak g_i^{\\mathbb H}] \\)</span>. Let <span>\\(N=\\Gamma\\setminus G\\)</span> be a hypercomplex nilmanifold with the flat Obata connection and <span>\\(\\mathfrak g=\\operatorname{Lie}(G)\\)</span>. We prove that the Lie algebra <span>\\(\\mathfrak g\\)</span> is <span>\\(\\mathbb H\\)</span>-solvable. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat Hypercomplex Nilmanifolds are \\\\(\\\\mathbb H\\\\)-Solvable\",\"authors\":\"Yulia Gorginyan\",\"doi\":\"10.1134/S001626632403002X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(\\\\mathbb H\\\\)</span> be a quaternion algebra generated by <span>\\\\(I,J\\\\)</span> and <span>\\\\(K\\\\)</span>. We say that a hypercomplex nilpotent Lie algebra <span>\\\\(\\\\mathfrak g\\\\)</span> is <span>\\\\(\\\\mathbb H\\\\)</span><i>-solvable</i> if there exists a sequence of <span>\\\\(\\\\mathbb H\\\\)</span>-invariant subalgebras containing <span>\\\\(\\\\mathfrak g_{i+1}=[\\\\mathfrak g_i,\\\\mathfrak g_i]\\\\)</span>, </p><p> such that <span>\\\\([\\\\mathfrak g_i^{\\\\mathbb H},\\\\mathfrak g_i^{\\\\mathbb H}]\\\\subset\\\\mathfrak g^{\\\\mathbb H}_{i+1}\\\\)</span> and <span>\\\\(\\\\mathfrak g_{i+1}^{\\\\mathbb H}=\\\\mathbb H[\\\\mathfrak g_i^{\\\\mathbb H},\\\\mathfrak g_i^{\\\\mathbb H}] \\\\)</span>. Let <span>\\\\(N=\\\\Gamma\\\\setminus G\\\\)</span> be a hypercomplex nilmanifold with the flat Obata connection and <span>\\\\(\\\\mathfrak g=\\\\operatorname{Lie}(G)\\\\)</span>. We prove that the Lie algebra <span>\\\\(\\\\mathfrak g\\\\)</span> is <span>\\\\(\\\\mathbb H\\\\)</span>-solvable. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001626632403002X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632403002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flat Hypercomplex Nilmanifolds are \(\mathbb H\)-Solvable
Let \(\mathbb H\) be a quaternion algebra generated by \(I,J\) and \(K\). We say that a hypercomplex nilpotent Lie algebra \(\mathfrak g\) is \(\mathbb H\)-solvable if there exists a sequence of \(\mathbb H\)-invariant subalgebras containing \(\mathfrak g_{i+1}=[\mathfrak g_i,\mathfrak g_i]\),
such that \([\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}]\subset\mathfrak g^{\mathbb H}_{i+1}\) and \(\mathfrak g_{i+1}^{\mathbb H}=\mathbb H[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}] \). Let \(N=\Gamma\setminus G\) be a hypercomplex nilmanifold with the flat Obata connection and \(\mathfrak g=\operatorname{Lie}(G)\). We prove that the Lie algebra \(\mathfrak g\) is \(\mathbb H\)-solvable.