寻找包含圆和球体最大值的近似计算法

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Kaiqi Zhang , Siyuan Zhang , Jirun Gao , Hongzhi Wang , Hong Gao , Jianzhong Li
{"title":"寻找包含圆和球体最大值的近似计算法","authors":"Kaiqi Zhang ,&nbsp;Siyuan Zhang ,&nbsp;Jirun Gao ,&nbsp;Hongzhi Wang ,&nbsp;Hong Gao ,&nbsp;Jianzhong Li","doi":"10.1016/j.tcs.2024.114901","DOIUrl":null,"url":null,"abstract":"<div><div>We first study maximum containing circle problem. The input to the problem is a weighted set of points and a circle of fixed radius, and the output is a suitable location of the circle such that the sum of the weights of the points covered by the circle is maximized. We propose a special polygon, called symmetrical rectilinear polygon (SRP). In this paper, we give a method for constructing the circumscribed SRP of a circle and prove the area relationship between this polygon and the circle. We solve the maximum containing SRP problem exactly, and based on this, give an algorithm for solving the <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo></math></span>-approximation of maximum containing circle problem. We also show that the algorithm is valid for most inputs. It only needs <span><math><mi>O</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>log</mi></mrow><mspace></mspace><mi>n</mi><mo>+</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></math></span> time for unit points and <span><math><mi>o</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace></mspace><mrow><mi>log</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></mrow></math></span> time for weighted points. Due to its low time complexity, the algorithm can run as a stand-alone algorithm or as a preprocessor for other algorithms. As an extension of our work, we discuss a 3D version of the unweighted maximum containing circle problem, i.e., containing the maximum number of points with a given sphere. We give a <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm for this problem that returns correct results in <span><math><mi>m</mi><mi>a</mi><mi>x</mi><mo>{</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>/</mo><msup><mrow><mi>log</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>⁡</mo><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></mrow><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>,</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>log</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>}</mo></math></span> time for most cases.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1023 ","pages":"Article 114901"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation algorithms for finding maximum containing circle and sphere\",\"authors\":\"Kaiqi Zhang ,&nbsp;Siyuan Zhang ,&nbsp;Jirun Gao ,&nbsp;Hongzhi Wang ,&nbsp;Hong Gao ,&nbsp;Jianzhong Li\",\"doi\":\"10.1016/j.tcs.2024.114901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We first study maximum containing circle problem. The input to the problem is a weighted set of points and a circle of fixed radius, and the output is a suitable location of the circle such that the sum of the weights of the points covered by the circle is maximized. We propose a special polygon, called symmetrical rectilinear polygon (SRP). In this paper, we give a method for constructing the circumscribed SRP of a circle and prove the area relationship between this polygon and the circle. We solve the maximum containing SRP problem exactly, and based on this, give an algorithm for solving the <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo></math></span>-approximation of maximum containing circle problem. We also show that the algorithm is valid for most inputs. It only needs <span><math><mi>O</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>log</mi></mrow><mspace></mspace><mi>n</mi><mo>+</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></math></span> time for unit points and <span><math><mi>o</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace></mspace><mrow><mi>log</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></mrow></math></span> time for weighted points. Due to its low time complexity, the algorithm can run as a stand-alone algorithm or as a preprocessor for other algorithms. As an extension of our work, we discuss a 3D version of the unweighted maximum containing circle problem, i.e., containing the maximum number of points with a given sphere. We give a <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm for this problem that returns correct results in <span><math><mi>m</mi><mi>a</mi><mi>x</mi><mo>{</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>/</mo><msup><mrow><mi>log</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>⁡</mo><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></mrow><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>,</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>log</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>}</mo></math></span> time for most cases.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1023 \",\"pages\":\"Article 114901\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005188\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005188","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们首先研究最大包含圆问题。该问题的输入是一组加权点和一个半径固定的圆,输出是一个合适的圆的位置,使得圆所覆盖的点的权重之和最大。我们提出了一种特殊的多边形,称为对称直线多边形(SRP)。在本文中,我们给出了一种构建圆的周长 SRP 的方法,并证明了该多边形与圆之间的面积关系。我们精确求解了最大包含 SRP 问题,并在此基础上给出了求解最大包含圆的 (1-ε)- 近似问题的算法。我们还证明了该算法对大多数输入都有效。对于单位点,它只需要 O(nε-1logn+nε-1log(1ε)) 时间,对于加权点,只需要 o(nε-2logn) 时间。由于时间复杂度低,该算法既可以作为独立算法运行,也可以作为其他算法的预处理器运行。作为我们工作的扩展,我们讨论了非加权最大含圆问题的三维版本,即在给定球面上包含最大数量的点。我们给出了该问题的 (1-ε)- 近似算法,该算法在大多数情况下只需最大{O((n32ε-3/log32(nε-2))(loglog(nε-2))O(1)),o(n2(ε-1logn)2)}时间即可得到正确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation algorithms for finding maximum containing circle and sphere
We first study maximum containing circle problem. The input to the problem is a weighted set of points and a circle of fixed radius, and the output is a suitable location of the circle such that the sum of the weights of the points covered by the circle is maximized. We propose a special polygon, called symmetrical rectilinear polygon (SRP). In this paper, we give a method for constructing the circumscribed SRP of a circle and prove the area relationship between this polygon and the circle. We solve the maximum containing SRP problem exactly, and based on this, give an algorithm for solving the (1ε)-approximation of maximum containing circle problem. We also show that the algorithm is valid for most inputs. It only needs O(nε1logn+nε1log(1ε)) time for unit points and o(nε2logn) time for weighted points. Due to its low time complexity, the algorithm can run as a stand-alone algorithm or as a preprocessor for other algorithms. As an extension of our work, we discuss a 3D version of the unweighted maximum containing circle problem, i.e., containing the maximum number of points with a given sphere. We give a (1ε)-approximation algorithm for this problem that returns correct results in max{O((n32ε3/log32(nε2))(loglog(nε2))O(1)),o(n2(ε1logn)2)} time for most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信