Guodong Chen , Jesús Arroyo , Avanti Athreya , Joshua Cape , Joshua T. Vogelstein , Youngser Park , Chris White , Jonathan Larson , Weiwei Yang , Carey E. Priebe
{"title":"用于时间序列图异常检测的多重网络嵌入","authors":"Guodong Chen , Jesús Arroyo , Avanti Athreya , Joshua Cape , Joshua T. Vogelstein , Youngser Park , Chris White , Jonathan Larson , Weiwei Yang , Carey E. Priebe","doi":"10.1016/j.csda.2024.108070","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of anomaly detection in time series of graphs is considered, focusing on two related inference tasks: the detection of anomalous graphs within a time series and the detection of temporally anomalous vertices. These tasks are approached via the adaptation of multiple adjacency spectral embedding (MASE), a statistically principled method for joint graph inference. The effectiveness of the method is demonstrated for these inference tasks, and its performance is assessed based on the nature of detectable anomalies. Theoretical justification is provided, along with insights into its use. The approach identifies anomalous vertices beyond just large degree changes when applied to the Enron communication graph, a large-scale commercial search engine time series, and a larval Drosophila connectome.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple network embedding for anomaly detection in time series of graphs\",\"authors\":\"Guodong Chen , Jesús Arroyo , Avanti Athreya , Joshua Cape , Joshua T. Vogelstein , Youngser Park , Chris White , Jonathan Larson , Weiwei Yang , Carey E. Priebe\",\"doi\":\"10.1016/j.csda.2024.108070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The problem of anomaly detection in time series of graphs is considered, focusing on two related inference tasks: the detection of anomalous graphs within a time series and the detection of temporally anomalous vertices. These tasks are approached via the adaptation of multiple adjacency spectral embedding (MASE), a statistically principled method for joint graph inference. The effectiveness of the method is demonstrated for these inference tasks, and its performance is assessed based on the nature of detectable anomalies. Theoretical justification is provided, along with insights into its use. The approach identifies anomalous vertices beyond just large degree changes when applied to the Enron communication graph, a large-scale commercial search engine time series, and a larval Drosophila connectome.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001543\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001543","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiple network embedding for anomaly detection in time series of graphs
The problem of anomaly detection in time series of graphs is considered, focusing on two related inference tasks: the detection of anomalous graphs within a time series and the detection of temporally anomalous vertices. These tasks are approached via the adaptation of multiple adjacency spectral embedding (MASE), a statistically principled method for joint graph inference. The effectiveness of the method is demonstrated for these inference tasks, and its performance is assessed based on the nature of detectable anomalies. Theoretical justification is provided, along with insights into its use. The approach identifies anomalous vertices beyond just large degree changes when applied to the Enron communication graph, a large-scale commercial search engine time series, and a larval Drosophila connectome.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.