金矿化的遥感和磁性特征及其结构影响:埃及东部沙漠 Meatiq 穹顶

IF 2.2 4区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
{"title":"金矿化的遥感和磁性特征及其结构影响:埃及东部沙漠 Meatiq 穹顶","authors":"","doi":"10.1016/j.jafrearsci.2024.105442","DOIUrl":null,"url":null,"abstract":"<div><div>This article examines hydrothermally altered ophiolitic ultramafic rocks (HAOU), specifically Listvenite, which are thrust over the Meatiq dome in the context of gold mineralization. These rocks represent gneissic complexes located in Egypt's eastern desert. The analyses presented herein are essential for understanding the distribution of sheared serpentinite on and beneath the surface and the underlying domal structure. This study offers critical insights into the distribution of serpentinite at Meatiq. It combines remote sensing, aerial and ground magnetic data with petrological, geochemical, and geological analyses to create precise geological maps of potential subsurface igneous structures commonly linked to gold mineralization. Remote sensing is used to test for rock differentiation; intensive field geological investigations were conducted along several traverses. Petrographic and geochemical analysis of selected samples confirmed Au content in some localities. Additionally, tomographic inversion of the collected magnetic land profiles has unveiled previously unidentified subsurface distributions of magnetic susceptibilities, which are essential for explaining the observed surface magnetic anomalies and for understanding the subsurface arrangement of various rock units. Results show that the HAOU rocks have a lower magnetic susceptibility signature relative to the adjacent serpentinites, the serpentinite from South Meatiq shows relatively high gold content, and the gold content decreases with carbonation and alteration of the serpentinite into talc-carbonate, as detected geochemically. The procedure followed in the present study can be regionally applied to studying HAOU rocks of similar geologic conditions. The novelty of this study, beyond the introduction of a novel workflow, lies in the revelation that the rocks forming the Meatiq dome are in thrust contact with steeply dipping suprastructure units.</div></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote sensing and magnetic characterization of the Au mineralization and its structural implications: Meatiq dome, Eastern Desert, Egypt\",\"authors\":\"\",\"doi\":\"10.1016/j.jafrearsci.2024.105442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article examines hydrothermally altered ophiolitic ultramafic rocks (HAOU), specifically Listvenite, which are thrust over the Meatiq dome in the context of gold mineralization. These rocks represent gneissic complexes located in Egypt's eastern desert. The analyses presented herein are essential for understanding the distribution of sheared serpentinite on and beneath the surface and the underlying domal structure. This study offers critical insights into the distribution of serpentinite at Meatiq. It combines remote sensing, aerial and ground magnetic data with petrological, geochemical, and geological analyses to create precise geological maps of potential subsurface igneous structures commonly linked to gold mineralization. Remote sensing is used to test for rock differentiation; intensive field geological investigations were conducted along several traverses. Petrographic and geochemical analysis of selected samples confirmed Au content in some localities. Additionally, tomographic inversion of the collected magnetic land profiles has unveiled previously unidentified subsurface distributions of magnetic susceptibilities, which are essential for explaining the observed surface magnetic anomalies and for understanding the subsurface arrangement of various rock units. Results show that the HAOU rocks have a lower magnetic susceptibility signature relative to the adjacent serpentinites, the serpentinite from South Meatiq shows relatively high gold content, and the gold content decreases with carbonation and alteration of the serpentinite into talc-carbonate, as detected geochemically. The procedure followed in the present study can be regionally applied to studying HAOU rocks of similar geologic conditions. The novelty of this study, beyond the introduction of a novel workflow, lies in the revelation that the rocks forming the Meatiq dome are in thrust contact with steeply dipping suprastructure units.</div></div>\",\"PeriodicalId\":14874,\"journal\":{\"name\":\"Journal of African Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of African Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464343X24002759\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24002759","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文结合金矿化研究了热液蚀变蛇绿岩超基性岩(HAOU),特别是Listvenite,这些岩石被推覆在Meatiq圆顶上。这些岩石是位于埃及东部沙漠的片麻岩复合体。本文介绍的分析对于了解地表和地下剪切蛇绿岩的分布以及下伏穹隆结构至关重要。这项研究为了解梅阿提克蛇绿岩的分布提供了重要依据。它将遥感、航空和地面磁力数据与岩石学、地球化学和地质分析相结合,绘制出与金矿化相关的潜在地下火成岩结构的精确地质图。利用遥感技术测试岩石分异;沿着几条穿越路线进行了深入的实地地质调查。对选定样本进行的岩相学和地球化学分析证实了某些地方的金含量。此外,对收集到的磁性地层剖面进行层析反演,揭示了以前未发现的地表下磁感应强度分布,这对于解释观测到的地表磁异常和了解不同岩石单元的地表下排列情况至关重要。结果表明,相对于邻近的蛇纹岩,HAOU 岩石具有较低的磁感应强度特征,南梅阿提克的蛇纹岩显示出相对较高的含金量,而且正如地球化学所探测到的那样,金含量随着碳化和蛇纹岩蚀变为滑石碳酸盐而降低。本研究中遵循的程序可在地区范围内用于研究地质条件类似的 HAOU 岩石。本研究的新颖之处不仅在于引入了新的工作流程,还在于揭示了形成 Meatiq 圆顶的岩石与陡倾的上基底单元呈推力接触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote sensing and magnetic characterization of the Au mineralization and its structural implications: Meatiq dome, Eastern Desert, Egypt
This article examines hydrothermally altered ophiolitic ultramafic rocks (HAOU), specifically Listvenite, which are thrust over the Meatiq dome in the context of gold mineralization. These rocks represent gneissic complexes located in Egypt's eastern desert. The analyses presented herein are essential for understanding the distribution of sheared serpentinite on and beneath the surface and the underlying domal structure. This study offers critical insights into the distribution of serpentinite at Meatiq. It combines remote sensing, aerial and ground magnetic data with petrological, geochemical, and geological analyses to create precise geological maps of potential subsurface igneous structures commonly linked to gold mineralization. Remote sensing is used to test for rock differentiation; intensive field geological investigations were conducted along several traverses. Petrographic and geochemical analysis of selected samples confirmed Au content in some localities. Additionally, tomographic inversion of the collected magnetic land profiles has unveiled previously unidentified subsurface distributions of magnetic susceptibilities, which are essential for explaining the observed surface magnetic anomalies and for understanding the subsurface arrangement of various rock units. Results show that the HAOU rocks have a lower magnetic susceptibility signature relative to the adjacent serpentinites, the serpentinite from South Meatiq shows relatively high gold content, and the gold content decreases with carbonation and alteration of the serpentinite into talc-carbonate, as detected geochemically. The procedure followed in the present study can be regionally applied to studying HAOU rocks of similar geologic conditions. The novelty of this study, beyond the introduction of a novel workflow, lies in the revelation that the rocks forming the Meatiq dome are in thrust contact with steeply dipping suprastructure units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of African Earth Sciences
Journal of African Earth Sciences 地学-地球科学综合
CiteScore
4.70
自引率
4.30%
发文量
240
审稿时长
12 months
期刊介绍: The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa. The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信