{"title":"玻璃态液体的结构熵","authors":"Rui Qi, Minhua Sun","doi":"10.1016/j.cplett.2024.141685","DOIUrl":null,"url":null,"abstract":"<div><div>Drawing on Shannon entropy, we developed a parameter called “structural entropy,” which is derived uniquely from atomic configurations and serves to measure the evolution of disorder during the glass transition. We applied this parameter to the glass transition in the CuZrAl system. A comparison with configurational entropy suggests that both may fundamentally encapsulate the same physical concept: the system’s level of disorder. This new structural entropy parameter bridges the gap between the macroscopic properties and the microscopic structure of glass, offering insights into the mechanisms underlying the glass transition.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"856 ","pages":"Article 141685"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural entropy of glass-forming liquid\",\"authors\":\"Rui Qi, Minhua Sun\",\"doi\":\"10.1016/j.cplett.2024.141685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drawing on Shannon entropy, we developed a parameter called “structural entropy,” which is derived uniquely from atomic configurations and serves to measure the evolution of disorder during the glass transition. We applied this parameter to the glass transition in the CuZrAl system. A comparison with configurational entropy suggests that both may fundamentally encapsulate the same physical concept: the system’s level of disorder. This new structural entropy parameter bridges the gap between the macroscopic properties and the microscopic structure of glass, offering insights into the mechanisms underlying the glass transition.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"856 \",\"pages\":\"Article 141685\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424006274\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006274","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Drawing on Shannon entropy, we developed a parameter called “structural entropy,” which is derived uniquely from atomic configurations and serves to measure the evolution of disorder during the glass transition. We applied this parameter to the glass transition in the CuZrAl system. A comparison with configurational entropy suggests that both may fundamentally encapsulate the same physical concept: the system’s level of disorder. This new structural entropy parameter bridges the gap between the macroscopic properties and the microscopic structure of glass, offering insights into the mechanisms underlying the glass transition.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.