Guanghua Liu , Jia Zhang , Peng Lv , Chenlong Wang , Huan Wang , Di Wang
{"title":"TAAD:动态图中的时变对抗异常检测","authors":"Guanghua Liu , Jia Zhang , Peng Lv , Chenlong Wang , Huan Wang , Di Wang","doi":"10.1016/j.ipm.2024.103912","DOIUrl":null,"url":null,"abstract":"<div><div>The timely detection of anomalous nodes that can cause significant harm is essential in real-world networks. One challenge for anomaly detection in dynamic graphs is the identification of abnormal nodes at newly emerged moments. Unfortunately, existing methods tend to learn nontransferable features from historical moments that do not generalize well to newly emerged moments. In response to this challenge, we propose Time-varying Adversarial Anomaly Detection (TAAD), a generalizable model to learn transferable features from historical moments, which can transfer prior anomaly knowledge to newly emerged moments. It comprises four components: the feature extractor, the anomaly detector, the time-varying discriminator and the score generator. The time-varying discriminator cooperates with the feature extractor to conduct adversarial training, which decreases the distributional differences in the feature representations of nodes between historical and newly emerged moments to learn transferable features. The score generator measures the distributional differences of feature representations between normal and abnormal nodes, and further learns discriminable features. Extensive experiments conducted with four different datasets present that the proposed TAAD outperforms state-of-the-art methods.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103912"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAAD: Time-varying adversarial anomaly detection in dynamic graphs\",\"authors\":\"Guanghua Liu , Jia Zhang , Peng Lv , Chenlong Wang , Huan Wang , Di Wang\",\"doi\":\"10.1016/j.ipm.2024.103912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The timely detection of anomalous nodes that can cause significant harm is essential in real-world networks. One challenge for anomaly detection in dynamic graphs is the identification of abnormal nodes at newly emerged moments. Unfortunately, existing methods tend to learn nontransferable features from historical moments that do not generalize well to newly emerged moments. In response to this challenge, we propose Time-varying Adversarial Anomaly Detection (TAAD), a generalizable model to learn transferable features from historical moments, which can transfer prior anomaly knowledge to newly emerged moments. It comprises four components: the feature extractor, the anomaly detector, the time-varying discriminator and the score generator. The time-varying discriminator cooperates with the feature extractor to conduct adversarial training, which decreases the distributional differences in the feature representations of nodes between historical and newly emerged moments to learn transferable features. The score generator measures the distributional differences of feature representations between normal and abnormal nodes, and further learns discriminable features. Extensive experiments conducted with four different datasets present that the proposed TAAD outperforms state-of-the-art methods.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 1\",\"pages\":\"Article 103912\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002711\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002711","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
TAAD: Time-varying adversarial anomaly detection in dynamic graphs
The timely detection of anomalous nodes that can cause significant harm is essential in real-world networks. One challenge for anomaly detection in dynamic graphs is the identification of abnormal nodes at newly emerged moments. Unfortunately, existing methods tend to learn nontransferable features from historical moments that do not generalize well to newly emerged moments. In response to this challenge, we propose Time-varying Adversarial Anomaly Detection (TAAD), a generalizable model to learn transferable features from historical moments, which can transfer prior anomaly knowledge to newly emerged moments. It comprises four components: the feature extractor, the anomaly detector, the time-varying discriminator and the score generator. The time-varying discriminator cooperates with the feature extractor to conduct adversarial training, which decreases the distributional differences in the feature representations of nodes between historical and newly emerged moments to learn transferable features. The score generator measures the distributional differences of feature representations between normal and abnormal nodes, and further learns discriminable features. Extensive experiments conducted with four different datasets present that the proposed TAAD outperforms state-of-the-art methods.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.