分析和解决物理信息神经网络中的条件不良问题

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wenbo Cao , Weiwei Zhang
{"title":"分析和解决物理信息神经网络中的条件不良问题","authors":"Wenbo Cao ,&nbsp;Weiwei Zhang","doi":"10.1016/j.jcp.2024.113494","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-informed neural networks (PINNs) have recently emerged as a novel and popular approach for solving forward and inverse problems involving partial differential equations (PDEs). However, ensuring stable training and obtaining accurate results remain challenging in many scenarios, often attributed to the ill-conditioning of PINNs. Despite this, a deeper analysis is still lacking, which hampers progress and application of PINNs in complex engineering problems. Drawing inspiration from the ill-conditioning analysis in traditional numerical methods, we establish a strong connection between the ill-conditioning of PINNs and the Jacobian matrix of the PDE system. Specifically, for any given PDE system, we construct a controlled system that allows for the adjustment of the Jacobian matrix's condition number while retaining the same solution as the original system. Our numerical experiments show that as the condition number of the Jacobian matrix decreases, PINNs exhibit faster convergence and higher accuracy. Building upon this principle and the extension of controlled systems, we propose a general approach to mitigate the ill-conditioning in PINNs, leading to successful simulations of three-dimensional flow around the M6 wing at a Reynolds number of 5,000. To the best of our knowledge, this is the first time that PINNs have successfully simulated such complex systems, offering a promising new technique for addressing industrial complexity problems. Our findings also provide valuable insights to guide the future development of PINNs.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113494"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis and solution of ill-conditioning in physics-informed neural networks\",\"authors\":\"Wenbo Cao ,&nbsp;Weiwei Zhang\",\"doi\":\"10.1016/j.jcp.2024.113494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Physics-informed neural networks (PINNs) have recently emerged as a novel and popular approach for solving forward and inverse problems involving partial differential equations (PDEs). However, ensuring stable training and obtaining accurate results remain challenging in many scenarios, often attributed to the ill-conditioning of PINNs. Despite this, a deeper analysis is still lacking, which hampers progress and application of PINNs in complex engineering problems. Drawing inspiration from the ill-conditioning analysis in traditional numerical methods, we establish a strong connection between the ill-conditioning of PINNs and the Jacobian matrix of the PDE system. Specifically, for any given PDE system, we construct a controlled system that allows for the adjustment of the Jacobian matrix's condition number while retaining the same solution as the original system. Our numerical experiments show that as the condition number of the Jacobian matrix decreases, PINNs exhibit faster convergence and higher accuracy. Building upon this principle and the extension of controlled systems, we propose a general approach to mitigate the ill-conditioning in PINNs, leading to successful simulations of three-dimensional flow around the M6 wing at a Reynolds number of 5,000. To the best of our knowledge, this is the first time that PINNs have successfully simulated such complex systems, offering a promising new technique for addressing industrial complexity problems. Our findings also provide valuable insights to guide the future development of PINNs.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113494\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007423\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007423","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

物理信息神经网络(PINNs)是最近出现的一种新型流行方法,用于解决涉及偏微分方程(PDEs)的正向和反向问题。然而,在许多情况下,确保稳定的训练和获得准确的结果仍然具有挑战性,这通常归因于 PINNs 的条件不完善。尽管如此,仍然缺乏更深入的分析,这阻碍了 PINNs 在复杂工程问题中的进展和应用。从传统数值方法中的条件不良分析中汲取灵感,我们建立了 PINNs 条件不良与 PDE 系统雅各布矩阵之间的紧密联系。具体来说,对于任何给定的 PDE 系统,我们都会构建一个受控系统,允许调整雅各布矩阵的条件数,同时保留与原始系统相同的解。我们的数值实验表明,随着雅各布矩阵条件数的减少,PINNs 会表现出更快的收敛速度和更高的精度。基于这一原理和受控系统的扩展,我们提出了一种通用方法来减轻 PINNs 中的条件不良,从而成功模拟了雷诺数为 5,000 的 M6 机翼周围的三维流动。据我们所知,这是 PINNs 首次成功模拟如此复杂的系统,为解决工业复杂性问题提供了一种前景广阔的新技术。我们的研究结果还为指导 PINNs 的未来发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis and solution of ill-conditioning in physics-informed neural networks
Physics-informed neural networks (PINNs) have recently emerged as a novel and popular approach for solving forward and inverse problems involving partial differential equations (PDEs). However, ensuring stable training and obtaining accurate results remain challenging in many scenarios, often attributed to the ill-conditioning of PINNs. Despite this, a deeper analysis is still lacking, which hampers progress and application of PINNs in complex engineering problems. Drawing inspiration from the ill-conditioning analysis in traditional numerical methods, we establish a strong connection between the ill-conditioning of PINNs and the Jacobian matrix of the PDE system. Specifically, for any given PDE system, we construct a controlled system that allows for the adjustment of the Jacobian matrix's condition number while retaining the same solution as the original system. Our numerical experiments show that as the condition number of the Jacobian matrix decreases, PINNs exhibit faster convergence and higher accuracy. Building upon this principle and the extension of controlled systems, we propose a general approach to mitigate the ill-conditioning in PINNs, leading to successful simulations of three-dimensional flow around the M6 wing at a Reynolds number of 5,000. To the best of our knowledge, this is the first time that PINNs have successfully simulated such complex systems, offering a promising new technique for addressing industrial complexity problems. Our findings also provide valuable insights to guide the future development of PINNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信