{"title":"双曲守恒定律非连续伽勒金方法中的跃迁滤波器","authors":"Lei Wei , Lingling Zhou , Yinhua Xia","doi":"10.1016/j.jcp.2024.113498","DOIUrl":null,"url":null,"abstract":"<div><div>When simulating hyperbolic conservation laws with discontinuous solutions, high-order linear numerical schemes often produce undesirable spurious oscillations. In this paper, we propose a jump filter within the discontinuous Galerkin (DG) method to mitigate these oscillations. This filter operates locally based on jump information at cell interfaces, targeting high-order polynomial modes within each cell. Besides its localized nature, our proposed filter preserves key attributes of the DG method, including conservation, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stability, and high-order accuracy. We also explore its compatibility with other damping techniques, and demonstrate its seamless integration into a hybrid limiter. In scenarios featuring strong shock waves, this hybrid approach, incorporating this jump filter as the low-order limiter, effectively suppresses numerical oscillations while exhibiting low numerical dissipation. Additionally, the proposed jump filter maintains the compactness of the DG scheme, which greatly aids in efficient parallel computing. Moreover, it boasts an impressively low computational cost, given that no characteristic decomposition is required and all computations are confined to physical space. Numerical experiments validate the effectiveness and performance of our proposed scheme, confirming its accuracy and shock-capturing capabilities.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113498"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The jump filter in the discontinuous Galerkin method for hyperbolic conservation laws\",\"authors\":\"Lei Wei , Lingling Zhou , Yinhua Xia\",\"doi\":\"10.1016/j.jcp.2024.113498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When simulating hyperbolic conservation laws with discontinuous solutions, high-order linear numerical schemes often produce undesirable spurious oscillations. In this paper, we propose a jump filter within the discontinuous Galerkin (DG) method to mitigate these oscillations. This filter operates locally based on jump information at cell interfaces, targeting high-order polynomial modes within each cell. Besides its localized nature, our proposed filter preserves key attributes of the DG method, including conservation, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stability, and high-order accuracy. We also explore its compatibility with other damping techniques, and demonstrate its seamless integration into a hybrid limiter. In scenarios featuring strong shock waves, this hybrid approach, incorporating this jump filter as the low-order limiter, effectively suppresses numerical oscillations while exhibiting low numerical dissipation. Additionally, the proposed jump filter maintains the compactness of the DG scheme, which greatly aids in efficient parallel computing. Moreover, it boasts an impressively low computational cost, given that no characteristic decomposition is required and all computations are confined to physical space. Numerical experiments validate the effectiveness and performance of our proposed scheme, confirming its accuracy and shock-capturing capabilities.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113498\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007460\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007460","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The jump filter in the discontinuous Galerkin method for hyperbolic conservation laws
When simulating hyperbolic conservation laws with discontinuous solutions, high-order linear numerical schemes often produce undesirable spurious oscillations. In this paper, we propose a jump filter within the discontinuous Galerkin (DG) method to mitigate these oscillations. This filter operates locally based on jump information at cell interfaces, targeting high-order polynomial modes within each cell. Besides its localized nature, our proposed filter preserves key attributes of the DG method, including conservation, stability, and high-order accuracy. We also explore its compatibility with other damping techniques, and demonstrate its seamless integration into a hybrid limiter. In scenarios featuring strong shock waves, this hybrid approach, incorporating this jump filter as the low-order limiter, effectively suppresses numerical oscillations while exhibiting low numerical dissipation. Additionally, the proposed jump filter maintains the compactness of the DG scheme, which greatly aids in efficient parallel computing. Moreover, it boasts an impressively low computational cost, given that no characteristic decomposition is required and all computations are confined to physical space. Numerical experiments validate the effectiveness and performance of our proposed scheme, confirming its accuracy and shock-capturing capabilities.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.