{"title":"关于 r→Sheffer 描边:一类新的方向单调函数","authors":"Yifan Zhao, Hua-Wen Liu","doi":"10.1016/j.fss.2024.109149","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, Baczyński et al. introduced the axiomatic definition of fuzzy Sheffer strokes and incorporated the Sheffer stroke operation into the fuzzy logic framework [Fuzzy Sets Syst. 431 (2022) 110-128]. In this paper, we introduce a new class of directionally monotone functions, called <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes. Firstly, we propose the notion of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes by relaxing the monotonicity of fuzzy Sheffer strokes to the directional monotonicity. And then, we discuss some vital properties of such functions as well as its relationship between fuzzy Sheffer strokes. Subsequently, we give a representation of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes by means of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-conjunctions and fuzzy negations. Meanwhile, we give a characterization of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-(constant) Sheffer strokes. Besides, we provide several construction methods of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes. Interestingly, we show that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-conjunctions, <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-disjunctions, (light) <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-t-norms, (light) <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-t-conorms, <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-(quasi-)overlap and grouping functions, and <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-implication functions can be obtained through adequate combinations of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes. Finally, we present an example of a potential application of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes in fire detectors.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On r→-Sheffer strokes: A new class of directionally monotone functions\",\"authors\":\"Yifan Zhao, Hua-Wen Liu\",\"doi\":\"10.1016/j.fss.2024.109149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, Baczyński et al. introduced the axiomatic definition of fuzzy Sheffer strokes and incorporated the Sheffer stroke operation into the fuzzy logic framework [Fuzzy Sets Syst. 431 (2022) 110-128]. In this paper, we introduce a new class of directionally monotone functions, called <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes. Firstly, we propose the notion of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes by relaxing the monotonicity of fuzzy Sheffer strokes to the directional monotonicity. And then, we discuss some vital properties of such functions as well as its relationship between fuzzy Sheffer strokes. Subsequently, we give a representation of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes by means of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-conjunctions and fuzzy negations. Meanwhile, we give a characterization of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-(constant) Sheffer strokes. Besides, we provide several construction methods of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes. Interestingly, we show that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-conjunctions, <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-disjunctions, (light) <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-t-norms, (light) <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-pre-t-conorms, <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-(quasi-)overlap and grouping functions, and <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-implication functions can be obtained through adequate combinations of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes. Finally, we present an example of a potential application of <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>-Sheffer strokes in fire detectors.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424002951\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424002951","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
On r→-Sheffer strokes: A new class of directionally monotone functions
Recently, Baczyński et al. introduced the axiomatic definition of fuzzy Sheffer strokes and incorporated the Sheffer stroke operation into the fuzzy logic framework [Fuzzy Sets Syst. 431 (2022) 110-128]. In this paper, we introduce a new class of directionally monotone functions, called -Sheffer strokes. Firstly, we propose the notion of -Sheffer strokes by relaxing the monotonicity of fuzzy Sheffer strokes to the directional monotonicity. And then, we discuss some vital properties of such functions as well as its relationship between fuzzy Sheffer strokes. Subsequently, we give a representation of -Sheffer strokes by means of -pre-conjunctions and fuzzy negations. Meanwhile, we give a characterization of -(constant) Sheffer strokes. Besides, we provide several construction methods of -Sheffer strokes. Interestingly, we show that -pre-conjunctions, -pre-disjunctions, (light) -pre-t-norms, (light) -pre-t-conorms, -(quasi-)overlap and grouping functions, and -implication functions can be obtained through adequate combinations of -Sheffer strokes. Finally, we present an example of a potential application of -Sheffer strokes in fire detectors.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.