Yun-shu Hu , Jian-qing Zhang , Meng Xu , Huan-ya Yang , Chun-xiang Liu , Yun Li , Qi-rui Bi , Yang Yang , Qin-hua Chen , De-an Guo
{"title":"利用 SPME-GC-QTOF-MS 和 LC- Orbitrap -MS 对异根藜不同部位进行化学特征描述和比较分析","authors":"Yun-shu Hu , Jian-qing Zhang , Meng Xu , Huan-ya Yang , Chun-xiang Liu , Yun Li , Qi-rui Bi , Yang Yang , Qin-hua Chen , De-an Guo","doi":"10.1016/j.jpba.2024.116502","DOIUrl":null,"url":null,"abstract":"<div><div>Asari radix et rhizoma is the sole plant from the Aristolochiaceae family officially sanctioned for medicinal in China, primarily employed for treating colds and headaches, and is widely utilized in clinical practice. Initially, the entire plant was specified for medicinal use, but since 2005, the authorized part has been restricted to the roots and rhizomes. The chemical constituents are directly linked to its efficacy and safety, yet a comparative analysis of the chemical profiles between the overground and underground parts has not been reported. This paper represents the first comparative study of the chemical constituents in the two parts, achieved through the synergistic application of solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME-GC-MS) and liquid chromatography Orbitrap MS (LC-Orbitrap-MS). Using SPME-GC-MS, 51 constituents were identified from both parts, with 89 % being shared components, indicating a close similarity in their volatile compositions. Through LC-Orbitrap-MS, 308 constituents were identified, sharing 76 % commonality, revealing a more pronounced disparity in non-volatile components. Plant metabolomics screening pinpointed 8 volatile and 14 non-volatile components capable of distinguishing the two parts, with the latter being more stable and thus better suited as markers for differentiation. This research furnishes a scientific rationale for selecting distinct parts of Asari radix et rhizoma and for implementing monitoring strategies in clinical application.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"252 ","pages":"Article 116502"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical profiling and comparative analysis of different parts of Asarum heterotropoides using SPME-GC-QTOF-MS and LC- Orbitrap -MS\",\"authors\":\"Yun-shu Hu , Jian-qing Zhang , Meng Xu , Huan-ya Yang , Chun-xiang Liu , Yun Li , Qi-rui Bi , Yang Yang , Qin-hua Chen , De-an Guo\",\"doi\":\"10.1016/j.jpba.2024.116502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Asari radix et rhizoma is the sole plant from the Aristolochiaceae family officially sanctioned for medicinal in China, primarily employed for treating colds and headaches, and is widely utilized in clinical practice. Initially, the entire plant was specified for medicinal use, but since 2005, the authorized part has been restricted to the roots and rhizomes. The chemical constituents are directly linked to its efficacy and safety, yet a comparative analysis of the chemical profiles between the overground and underground parts has not been reported. This paper represents the first comparative study of the chemical constituents in the two parts, achieved through the synergistic application of solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME-GC-MS) and liquid chromatography Orbitrap MS (LC-Orbitrap-MS). Using SPME-GC-MS, 51 constituents were identified from both parts, with 89 % being shared components, indicating a close similarity in their volatile compositions. Through LC-Orbitrap-MS, 308 constituents were identified, sharing 76 % commonality, revealing a more pronounced disparity in non-volatile components. Plant metabolomics screening pinpointed 8 volatile and 14 non-volatile components capable of distinguishing the two parts, with the latter being more stable and thus better suited as markers for differentiation. This research furnishes a scientific rationale for selecting distinct parts of Asari radix et rhizoma and for implementing monitoring strategies in clinical application.</div></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"252 \",\"pages\":\"Article 116502\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0731708524005442\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524005442","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Chemical profiling and comparative analysis of different parts of Asarum heterotropoides using SPME-GC-QTOF-MS and LC- Orbitrap -MS
Asari radix et rhizoma is the sole plant from the Aristolochiaceae family officially sanctioned for medicinal in China, primarily employed for treating colds and headaches, and is widely utilized in clinical practice. Initially, the entire plant was specified for medicinal use, but since 2005, the authorized part has been restricted to the roots and rhizomes. The chemical constituents are directly linked to its efficacy and safety, yet a comparative analysis of the chemical profiles between the overground and underground parts has not been reported. This paper represents the first comparative study of the chemical constituents in the two parts, achieved through the synergistic application of solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME-GC-MS) and liquid chromatography Orbitrap MS (LC-Orbitrap-MS). Using SPME-GC-MS, 51 constituents were identified from both parts, with 89 % being shared components, indicating a close similarity in their volatile compositions. Through LC-Orbitrap-MS, 308 constituents were identified, sharing 76 % commonality, revealing a more pronounced disparity in non-volatile components. Plant metabolomics screening pinpointed 8 volatile and 14 non-volatile components capable of distinguishing the two parts, with the latter being more stable and thus better suited as markers for differentiation. This research furnishes a scientific rationale for selecting distinct parts of Asari radix et rhizoma and for implementing monitoring strategies in clinical application.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.