2 级模糊环境中的信息融合:矩阵变换视角

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Li Zhu , Qianli Zhou , Yong Deng , Witold Pedrycz
{"title":"2 级模糊环境中的信息融合:矩阵变换视角","authors":"Li Zhu ,&nbsp;Qianli Zhou ,&nbsp;Yong Deng ,&nbsp;Witold Pedrycz","doi":"10.1016/j.fss.2024.109146","DOIUrl":null,"url":null,"abstract":"<div><div>Order-2 information granules, as a representation of multi-layer structured information, have recently rekindled discussions. It is usually generated by abstracting order-1 information granules. When the dependence relationship and corresponding membership function of the order-1 information granules (reference information granules) are known, Pedrycz et al. used a method based on gradient optimization to complete the aggregation of the order-2 information granules. In this paper, we discuss a more specific scenario: not only the dependencies between reference information granules are captured, but also the order-1 information granules can be expressed as specific fuzzy information distributions. For this, we propose a fusion scheme of order-2 fuzzy sets based on matrix transformation called CQRP. To our knowledge, it is the first method that completely integrates the structural information of the order-2 environment into the fusion of order-2 fuzzy sets. In the process, we also creatively proposed the attraction and exclusion of structural information, deepening the understanding of structural information. Through sufficient comparison and analysis, we prove that it makes fuller use of information in the order-2 environment and is more reasonable and effective in tasks such as classification and identification.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information fusion in order-2 fuzzy environments: A matrix transformation perspective\",\"authors\":\"Li Zhu ,&nbsp;Qianli Zhou ,&nbsp;Yong Deng ,&nbsp;Witold Pedrycz\",\"doi\":\"10.1016/j.fss.2024.109146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Order-2 information granules, as a representation of multi-layer structured information, have recently rekindled discussions. It is usually generated by abstracting order-1 information granules. When the dependence relationship and corresponding membership function of the order-1 information granules (reference information granules) are known, Pedrycz et al. used a method based on gradient optimization to complete the aggregation of the order-2 information granules. In this paper, we discuss a more specific scenario: not only the dependencies between reference information granules are captured, but also the order-1 information granules can be expressed as specific fuzzy information distributions. For this, we propose a fusion scheme of order-2 fuzzy sets based on matrix transformation called CQRP. To our knowledge, it is the first method that completely integrates the structural information of the order-2 environment into the fusion of order-2 fuzzy sets. In the process, we also creatively proposed the attraction and exclusion of structural information, deepening the understanding of structural information. Through sufficient comparison and analysis, we prove that it makes fuller use of information in the order-2 environment and is more reasonable and effective in tasks such as classification and identification.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424002926\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424002926","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

阶次-2 信息粒作为多层结构信息的一种表示形式,最近再次引发了讨论。它通常通过抽象阶-1 信息粒来生成。当已知阶-1 信息粒(参考信息粒)的依赖关系和相应的成员函数时,Pedrycz 等人使用基于梯度优化的方法来完成阶-2 信息粒的聚合。在本文中,我们讨论的是一种更特殊的情况:不仅要捕捉到参考信息粒之间的依赖关系,而且阶-1 信息粒也可以表示为特定的模糊信息分布。为此,我们提出了一种基于矩阵变换的阶-2 模糊集融合方案,称为 CQRP。据我们所知,这是第一个将阶-2 环境的结构信息完全融入阶-2 模糊集融合的方法。在此过程中,我们还创造性地提出了结构信息的吸引和排除,加深了对结构信息的理解。通过充分的对比和分析,我们证明它能更充分地利用阶-2 环境中的信息,在分类和识别等任务中更加合理有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information fusion in order-2 fuzzy environments: A matrix transformation perspective
Order-2 information granules, as a representation of multi-layer structured information, have recently rekindled discussions. It is usually generated by abstracting order-1 information granules. When the dependence relationship and corresponding membership function of the order-1 information granules (reference information granules) are known, Pedrycz et al. used a method based on gradient optimization to complete the aggregation of the order-2 information granules. In this paper, we discuss a more specific scenario: not only the dependencies between reference information granules are captured, but also the order-1 information granules can be expressed as specific fuzzy information distributions. For this, we propose a fusion scheme of order-2 fuzzy sets based on matrix transformation called CQRP. To our knowledge, it is the first method that completely integrates the structural information of the order-2 environment into the fusion of order-2 fuzzy sets. In the process, we also creatively proposed the attraction and exclusion of structural information, deepening the understanding of structural information. Through sufficient comparison and analysis, we prove that it makes fuller use of information in the order-2 environment and is more reasonable and effective in tasks such as classification and identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信