对与 IL-2 受体 α 结合亲和力预测增强的 IL-2 静音素的结合识别和计算设计的深入研究

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Thanapon Charoenwongpaiboon , Methus Klaewkla
{"title":"对与 IL-2 受体 α 结合亲和力预测增强的 IL-2 静音素的结合识别和计算设计的深入研究","authors":"Thanapon Charoenwongpaiboon ,&nbsp;Methus Klaewkla","doi":"10.1016/j.jmgm.2024.108883","DOIUrl":null,"url":null,"abstract":"<div><div>Interleukin-2 (IL-2) is an immune system regulator that has received approval for cancer treatment. However, high-dose IL-2 therapy has seen restricted use due to its low efficacy and on-target toxicity. To enhance the effectiveness of IL-2 therapy, it is essential to engineer IL-2 molecules to enhance their specificity toward target cell populations. In this study, molecular dynamics (MD) simulations and Rosetta software were utilized to design novel high-affinity IL-2Rα-binding IL-2 muteins. MD simulations were used to identify the target residues of IL-2 for design, and Rosetta software were then employed to predict potential IL-2 muteins with higher binding affinity toward IL-2Rα. Rosetta generated two potential designed IL-2 muteins. The results of the MD validation and MM/GBSA analysis indicated that both designed IL-2 muteins exhibited greater predicted binding affinities toward IL-2Rα than that of the native proteins. RMSF analysis demonstrated that the structural fluctuations of free IL-2 and designed muteins were similar, indicating that the mutations did not alter the intramolecular force responsible for IL-2's stability and folding. These designed IL-2 muteins may have potential benefits for cancer immunotherapy.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108883"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the binding recognition and computational design of IL-2 muteins with enhanced predicted binding affinity to the IL-2 receptor α\",\"authors\":\"Thanapon Charoenwongpaiboon ,&nbsp;Methus Klaewkla\",\"doi\":\"10.1016/j.jmgm.2024.108883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interleukin-2 (IL-2) is an immune system regulator that has received approval for cancer treatment. However, high-dose IL-2 therapy has seen restricted use due to its low efficacy and on-target toxicity. To enhance the effectiveness of IL-2 therapy, it is essential to engineer IL-2 molecules to enhance their specificity toward target cell populations. In this study, molecular dynamics (MD) simulations and Rosetta software were utilized to design novel high-affinity IL-2Rα-binding IL-2 muteins. MD simulations were used to identify the target residues of IL-2 for design, and Rosetta software were then employed to predict potential IL-2 muteins with higher binding affinity toward IL-2Rα. Rosetta generated two potential designed IL-2 muteins. The results of the MD validation and MM/GBSA analysis indicated that both designed IL-2 muteins exhibited greater predicted binding affinities toward IL-2Rα than that of the native proteins. RMSF analysis demonstrated that the structural fluctuations of free IL-2 and designed muteins were similar, indicating that the mutations did not alter the intramolecular force responsible for IL-2's stability and folding. These designed IL-2 muteins may have potential benefits for cancer immunotherapy.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"133 \",\"pages\":\"Article 108883\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001839\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001839","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

白细胞介素-2(IL-2)是一种免疫系统调节剂,已被批准用于癌症治疗。然而,由于低效和靶向毒性,大剂量 IL-2 疗法的使用受到了限制。为了提高IL-2疗法的疗效,必须对IL-2分子进行工程设计,以增强其对靶细胞群的特异性。本研究利用分子动力学(MD)模拟和Rosetta软件设计了新型高亲和力IL-2Rα结合型IL-2静音素。分子动力学模拟用于确定IL-2的目标残基,然后利用Rosetta软件预测与IL-2Rα结合亲和力更高的潜在IL-2静蛋白。Rosetta 生成了两种潜在的 IL-2 静蛋白。MD 验证和 MM/GBSA 分析的结果表明,这两种设计的 IL-2 muteins 对 IL-2Rα 的预测结合亲和力均高于原生蛋白。RMSF分析表明,游离IL-2和设计的静蛋白的结构波动相似,表明突变并没有改变导致IL-2稳定性和折叠的分子内力。这些设计的IL-2静音蛋白可能对癌症免疫疗法有潜在的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insights into the binding recognition and computational design of IL-2 muteins with enhanced predicted binding affinity to the IL-2 receptor α

Insights into the binding recognition and computational design of IL-2 muteins with enhanced predicted binding affinity to the IL-2 receptor α
Interleukin-2 (IL-2) is an immune system regulator that has received approval for cancer treatment. However, high-dose IL-2 therapy has seen restricted use due to its low efficacy and on-target toxicity. To enhance the effectiveness of IL-2 therapy, it is essential to engineer IL-2 molecules to enhance their specificity toward target cell populations. In this study, molecular dynamics (MD) simulations and Rosetta software were utilized to design novel high-affinity IL-2Rα-binding IL-2 muteins. MD simulations were used to identify the target residues of IL-2 for design, and Rosetta software were then employed to predict potential IL-2 muteins with higher binding affinity toward IL-2Rα. Rosetta generated two potential designed IL-2 muteins. The results of the MD validation and MM/GBSA analysis indicated that both designed IL-2 muteins exhibited greater predicted binding affinities toward IL-2Rα than that of the native proteins. RMSF analysis demonstrated that the structural fluctuations of free IL-2 and designed muteins were similar, indicating that the mutations did not alter the intramolecular force responsible for IL-2's stability and folding. These designed IL-2 muteins may have potential benefits for cancer immunotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信