Nannan Li , Xinyuan Li , Jun Zhou , Dong Jiang , Jian Liu , Hong Qin
{"title":"GeoHi-GNN:用于正态估计的几何感知分层图表示学习","authors":"Nannan Li , Xinyuan Li , Jun Zhou , Dong Jiang , Jian Liu , Hong Qin","doi":"10.1016/j.cagd.2024.102390","DOIUrl":null,"url":null,"abstract":"<div><div>Normal estimation has been one of the key tasks in point cloud analysis, while it is challenging when facing with severe noises or complex regions. The challenges mainly come from the selection of supporting points for estimation, that is, improper selections of points and points' scale will lead to insufficient information, loss of details, etc. To this end, this paper proposes one feature-centric fitting scheme, GeoHi-GNN, by learning geometry-aware hierarchical graph representation for fitting weights estimation. The main functional module is the continuously conducted Hierarchically Geometric-aware (HG) module, consisting of two core operations, namely, the graph node construction (GNC) and the geometric-aware dynamic graph convolution (GDGC). GNC aims to aggregate the feature information onto a smaller number of nodes, providing global-to-local information while avoiding the interferences from noises in larger scales. With these nodes distributed in different scales, GDGC dynamically updates the node features regarding to both intrinsic feature and extrinsic geometric information. Finally, the hierarchical graphical features are cascaded to estimate the weights for supporting points in the surface fitting. Through the extensive experiments and comprehensive comparisons with the state-of-the-arts, our scheme has exhibited many attractive advantages such as being geometry-aware and robust, empowering further applications like more accurate surface reconstruction.</div></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"114 ","pages":"Article 102390"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeoHi-GNN: Geometry-aware hierarchical graph representation learning for normal estimation\",\"authors\":\"Nannan Li , Xinyuan Li , Jun Zhou , Dong Jiang , Jian Liu , Hong Qin\",\"doi\":\"10.1016/j.cagd.2024.102390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Normal estimation has been one of the key tasks in point cloud analysis, while it is challenging when facing with severe noises or complex regions. The challenges mainly come from the selection of supporting points for estimation, that is, improper selections of points and points' scale will lead to insufficient information, loss of details, etc. To this end, this paper proposes one feature-centric fitting scheme, GeoHi-GNN, by learning geometry-aware hierarchical graph representation for fitting weights estimation. The main functional module is the continuously conducted Hierarchically Geometric-aware (HG) module, consisting of two core operations, namely, the graph node construction (GNC) and the geometric-aware dynamic graph convolution (GDGC). GNC aims to aggregate the feature information onto a smaller number of nodes, providing global-to-local information while avoiding the interferences from noises in larger scales. With these nodes distributed in different scales, GDGC dynamically updates the node features regarding to both intrinsic feature and extrinsic geometric information. Finally, the hierarchical graphical features are cascaded to estimate the weights for supporting points in the surface fitting. Through the extensive experiments and comprehensive comparisons with the state-of-the-arts, our scheme has exhibited many attractive advantages such as being geometry-aware and robust, empowering further applications like more accurate surface reconstruction.</div></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"114 \",\"pages\":\"Article 102390\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001249\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001249","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
GeoHi-GNN: Geometry-aware hierarchical graph representation learning for normal estimation
Normal estimation has been one of the key tasks in point cloud analysis, while it is challenging when facing with severe noises or complex regions. The challenges mainly come from the selection of supporting points for estimation, that is, improper selections of points and points' scale will lead to insufficient information, loss of details, etc. To this end, this paper proposes one feature-centric fitting scheme, GeoHi-GNN, by learning geometry-aware hierarchical graph representation for fitting weights estimation. The main functional module is the continuously conducted Hierarchically Geometric-aware (HG) module, consisting of two core operations, namely, the graph node construction (GNC) and the geometric-aware dynamic graph convolution (GDGC). GNC aims to aggregate the feature information onto a smaller number of nodes, providing global-to-local information while avoiding the interferences from noises in larger scales. With these nodes distributed in different scales, GDGC dynamically updates the node features regarding to both intrinsic feature and extrinsic geometric information. Finally, the hierarchical graphical features are cascaded to estimate the weights for supporting points in the surface fitting. Through the extensive experiments and comprehensive comparisons with the state-of-the-arts, our scheme has exhibited many attractive advantages such as being geometry-aware and robust, empowering further applications like more accurate surface reconstruction.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.