α-氨基-β-羧基琥珀酸-ε-半乳糖醛脱羧酶催化草酰乙酸的烯醇/酮共聚。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu Yang,Ian Davis,Ryan A Altman,Aimin Liu
{"title":"α-氨基-β-羧基琥珀酸-ε-半乳糖醛脱羧酶催化草酰乙酸的烯醇/酮共聚。","authors":"Yu Yang,Ian Davis,Ryan A Altman,Aimin Liu","doi":"10.1016/j.jbc.2024.107878","DOIUrl":null,"url":null,"abstract":"ACMSD (α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase) is a key metalloenzyme critical for regulating de novo endogenous NAD+/NADH biosynthesis through the tryptophan-kynurenine pathway. This decarboxylase is a recognized target implicated in mitochondrial diseases and neurodegenerative disorders. However, unraveling its enzyme-substrate complex has been challenging due to its high catalytic efficiency. Here, we present a combined biochemical and structural study wherein we determined the crystal structure of ACMSD in complex with malonate. Our analysis revealed significant rearrangements in the active site, particularly in residues crucial for ACMS decarboxylation, including Arg51, Arg239* (a residue from an adjacent subunit), His228, and Trp194. Docking modeling studies proposed a putative ACMS binding mode. Additionally, we found that ACMSD catalyzes oxaloacetic acid (OAA) tautomerization at a rate of 6.51 ± 0.42 s-1 but not decarboxylation. The isomerase activity of ACMSD on OAA warrants further investigation in future biological studies. Subsequent mutagenesis studies and crystallographic analysis of W194A variant shed light on the roles of specific second-coordination sphere residues. Our findings indicate that Arg51 and Arg239* are crucial for OAA tautomerization. Moreover, our comparative analysis with related isomerase superfamily members underscores a general strategy employing arginine residues to promote OAA isomerization. Given the observed isomerase activity of ACMSD on OAA and its structural similarity to ACMS, we propose that ACMSD may facilitate isomerization to ensure ACMS is in the optimal tautomeric form for subsequent decarboxylation initiated by the zinc-bound hydroxide ion. Overall, these findings deepen the understanding of the structure and function of ACMSD, offering insights into potential therapeutic interventions.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase Catalyzes Enol/Keto Tautomerization of Oxaloacetate.\",\"authors\":\"Yu Yang,Ian Davis,Ryan A Altman,Aimin Liu\",\"doi\":\"10.1016/j.jbc.2024.107878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ACMSD (α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase) is a key metalloenzyme critical for regulating de novo endogenous NAD+/NADH biosynthesis through the tryptophan-kynurenine pathway. This decarboxylase is a recognized target implicated in mitochondrial diseases and neurodegenerative disorders. However, unraveling its enzyme-substrate complex has been challenging due to its high catalytic efficiency. Here, we present a combined biochemical and structural study wherein we determined the crystal structure of ACMSD in complex with malonate. Our analysis revealed significant rearrangements in the active site, particularly in residues crucial for ACMS decarboxylation, including Arg51, Arg239* (a residue from an adjacent subunit), His228, and Trp194. Docking modeling studies proposed a putative ACMS binding mode. Additionally, we found that ACMSD catalyzes oxaloacetic acid (OAA) tautomerization at a rate of 6.51 ± 0.42 s-1 but not decarboxylation. The isomerase activity of ACMSD on OAA warrants further investigation in future biological studies. Subsequent mutagenesis studies and crystallographic analysis of W194A variant shed light on the roles of specific second-coordination sphere residues. Our findings indicate that Arg51 and Arg239* are crucial for OAA tautomerization. Moreover, our comparative analysis with related isomerase superfamily members underscores a general strategy employing arginine residues to promote OAA isomerization. Given the observed isomerase activity of ACMSD on OAA and its structural similarity to ACMS, we propose that ACMSD may facilitate isomerization to ensure ACMS is in the optimal tautomeric form for subsequent decarboxylation initiated by the zinc-bound hydroxide ion. Overall, these findings deepen the understanding of the structure and function of ACMSD, offering insights into potential therapeutic interventions.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107878\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107878","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ACMSD(α-氨基-β-羧基琥珀酸-ε-半醛脱羧酶)是一种关键的金属酶,对通过色氨酸-犬尿氨酸途径调节新生内源性 NAD+/NADH 生物合成至关重要。这种脱羧酶是与线粒体疾病和神经退行性疾病有关的公认靶点。然而,由于其催化效率高,揭示其酶-底物复合物一直是个挑战。在本文中,我们结合生化和结构研究,测定了 ACMSD 与丙二酸盐复合物的晶体结构。我们的分析揭示了活性位点的重大重排,尤其是对 ACMS 脱羧至关重要的残基,包括 Arg51、Arg239*(来自相邻亚基的残基)、His228 和 Trp194。对接建模研究提出了一种推定的 ACMS 结合模式。此外,我们还发现 ACMSD 能以 6.51 ± 0.42 s-1 的速度催化草酰乙酸(OAA)的同分异构,但不能催化脱羧。ACMSD 对 OAA 的异构酶活性值得在今后的生物学研究中进一步探讨。随后的诱变研究和 W194A 变体的晶体学分析揭示了特定第二配位层残基的作用。我们的研究结果表明,Arg51 和 Arg239* 对 OAA 的共聚至关重要。此外,我们与相关异构酶超家族成员的比较分析强调了利用精氨酸残基促进 OAA 异构化的一般策略。鉴于观察到的 ACMSD 对 OAA 的异构酶活性及其与 ACMS 的结构相似性,我们认为 ACMSD 可促进异构化,以确保 ACMS 处于最佳同分异构形式,以便随后由结合锌的氢氧根离子启动脱羧反应。总之,这些发现加深了人们对 ACMSD 结构和功能的了解,为潜在的治疗干预提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase Catalyzes Enol/Keto Tautomerization of Oxaloacetate.
ACMSD (α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase) is a key metalloenzyme critical for regulating de novo endogenous NAD+/NADH biosynthesis through the tryptophan-kynurenine pathway. This decarboxylase is a recognized target implicated in mitochondrial diseases and neurodegenerative disorders. However, unraveling its enzyme-substrate complex has been challenging due to its high catalytic efficiency. Here, we present a combined biochemical and structural study wherein we determined the crystal structure of ACMSD in complex with malonate. Our analysis revealed significant rearrangements in the active site, particularly in residues crucial for ACMS decarboxylation, including Arg51, Arg239* (a residue from an adjacent subunit), His228, and Trp194. Docking modeling studies proposed a putative ACMS binding mode. Additionally, we found that ACMSD catalyzes oxaloacetic acid (OAA) tautomerization at a rate of 6.51 ± 0.42 s-1 but not decarboxylation. The isomerase activity of ACMSD on OAA warrants further investigation in future biological studies. Subsequent mutagenesis studies and crystallographic analysis of W194A variant shed light on the roles of specific second-coordination sphere residues. Our findings indicate that Arg51 and Arg239* are crucial for OAA tautomerization. Moreover, our comparative analysis with related isomerase superfamily members underscores a general strategy employing arginine residues to promote OAA isomerization. Given the observed isomerase activity of ACMSD on OAA and its structural similarity to ACMS, we propose that ACMSD may facilitate isomerization to ensure ACMS is in the optimal tautomeric form for subsequent decarboxylation initiated by the zinc-bound hydroxide ion. Overall, these findings deepen the understanding of the structure and function of ACMSD, offering insights into potential therapeutic interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信