{"title":"关于紧凑凯勒流形全形对应的非极性电流的等差数列","authors":"Taeyong Ahn, Duc-Viet Vu","doi":"10.1007/s13324-024-00977-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a compact Kähler manifold of complex dimension <span>\\(k\\ge 2\\)</span> and <span>\\(f: X \\rightarrow X\\)</span> a holomorphic correspondence with simple action on cohomology such that <span>\\(f^{-1}\\)</span> is also a holomorphic correspondence. We prove that the sequence of normalized pull-backs of a non-pluripolar current under iterates of <i>f</i> converges to the Green current associated with <i>f</i>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equidistribution for non-pluripolar currents with respect to holomorphic correspondences of compact Kähler manifolds\",\"authors\":\"Taeyong Ahn, Duc-Viet Vu\",\"doi\":\"10.1007/s13324-024-00977-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> be a compact Kähler manifold of complex dimension <span>\\\\(k\\\\ge 2\\\\)</span> and <span>\\\\(f: X \\\\rightarrow X\\\\)</span> a holomorphic correspondence with simple action on cohomology such that <span>\\\\(f^{-1}\\\\)</span> is also a holomorphic correspondence. We prove that the sequence of normalized pull-backs of a non-pluripolar current under iterates of <i>f</i> converges to the Green current associated with <i>f</i>.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00977-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00977-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个紧凑的 Kähler 流形,其复数维度为 \(k\ge 2\) 和 \(f: X \rightarrow X\) 是一个全态对应,对同调有简单作用,这样 \(f^{-1}\) 也是一个全态对应。我们证明了在 f 的迭代下非极性电流的归一化回拉序列收敛于与 f 相关的格林电流。
Equidistribution for non-pluripolar currents with respect to holomorphic correspondences of compact Kähler manifolds
Let X be a compact Kähler manifold of complex dimension \(k\ge 2\) and \(f: X \rightarrow X\) a holomorphic correspondence with simple action on cohomology such that \(f^{-1}\) is also a holomorphic correspondence. We prove that the sequence of normalized pull-backs of a non-pluripolar current under iterates of f converges to the Green current associated with f.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.