基于特征的自适应植物识别

Moteaal Asadi Shirzi;Mehrdad R. Kermani
{"title":"基于特征的自适应植物识别","authors":"Moteaal Asadi Shirzi;Mehrdad R. Kermani","doi":"10.1109/TAFE.2024.3444730","DOIUrl":null,"url":null,"abstract":"In this article, we propose a new algorithm to improve plant recognition through the use of feature descriptors. The accurate results from this identification method are essential for enabling autonomous tasks, such as stem-stake coupling, in precision agriculture. The proposed method divides the input seedling color image into subimages within the International Commission on Illumination, for three color axes, L for lightness, A for the green-red component, and B for the blue-yellow component, color space and extracts seven key feature descriptors for each subimage. It then uses feature descriptors to create a matrix, which is employed to train an artificial neural network to determine optimized cutoff values. This network suggests cutoff values for a multilevel threshold segmentation for plant recognition. The method provides robust and real-time adaptive segmentation adaptable to various seedlings, backgrounds, and lighting conditions. By enabling accurate segmentation of the plant, morphological image processing can more effectively eliminate leaves to locate the seedling stem. This methodology automates image analysis in seedling propagation facilities and greenhouses and enables a wide range of precision agricultural tasks.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"335-346"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Feature-Based Plant Recognition\",\"authors\":\"Moteaal Asadi Shirzi;Mehrdad R. Kermani\",\"doi\":\"10.1109/TAFE.2024.3444730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a new algorithm to improve plant recognition through the use of feature descriptors. The accurate results from this identification method are essential for enabling autonomous tasks, such as stem-stake coupling, in precision agriculture. The proposed method divides the input seedling color image into subimages within the International Commission on Illumination, for three color axes, L for lightness, A for the green-red component, and B for the blue-yellow component, color space and extracts seven key feature descriptors for each subimage. It then uses feature descriptors to create a matrix, which is employed to train an artificial neural network to determine optimized cutoff values. This network suggests cutoff values for a multilevel threshold segmentation for plant recognition. The method provides robust and real-time adaptive segmentation adaptable to various seedlings, backgrounds, and lighting conditions. By enabling accurate segmentation of the plant, morphological image processing can more effectively eliminate leaves to locate the seedling stem. This methodology automates image analysis in seedling propagation facilities and greenhouses and enables a wide range of precision agricultural tasks.\",\"PeriodicalId\":100637,\"journal\":{\"name\":\"IEEE Transactions on AgriFood Electronics\",\"volume\":\"2 2\",\"pages\":\"335-346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on AgriFood Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669139/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669139/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新算法,通过使用特征描述符来提高植物识别率。这种识别方法得出的准确结果对于实现精准农业中的茎桩耦合等自主任务至关重要。所提出的方法将输入的秧苗彩色图像在国际照度委员会的三个色轴(L 代表亮度、A 代表绿-红分量、B 代表蓝-黄分量)色彩空间内分成若干子图像,并为每个子图像提取七个关键特征描述符。然后,它使用特征描述符创建一个矩阵,用来训练人工神经网络,以确定优化的截止值。该网络为用于植物识别的多级阈值分割提出截断值建议。该方法可提供稳健、实时的自适应分割,可适应各种幼苗、背景和光照条件。通过对植物进行精确分割,形态学图像处理可以更有效地去除叶子,从而找到幼苗茎干。这种方法可在秧苗繁殖设施和温室中自动进行图像分析,并实现各种精准农业任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Feature-Based Plant Recognition
In this article, we propose a new algorithm to improve plant recognition through the use of feature descriptors. The accurate results from this identification method are essential for enabling autonomous tasks, such as stem-stake coupling, in precision agriculture. The proposed method divides the input seedling color image into subimages within the International Commission on Illumination, for three color axes, L for lightness, A for the green-red component, and B for the blue-yellow component, color space and extracts seven key feature descriptors for each subimage. It then uses feature descriptors to create a matrix, which is employed to train an artificial neural network to determine optimized cutoff values. This network suggests cutoff values for a multilevel threshold segmentation for plant recognition. The method provides robust and real-time adaptive segmentation adaptable to various seedlings, backgrounds, and lighting conditions. By enabling accurate segmentation of the plant, morphological image processing can more effectively eliminate leaves to locate the seedling stem. This methodology automates image analysis in seedling propagation facilities and greenhouses and enables a wide range of precision agricultural tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信