通过高级强化学习进行全球多阶段路径规划

Babak Salamat;Sebastian-Sven Olzem;Gerhard Elsbacher;Andrea M. Tonello
{"title":"通过高级强化学习进行全球多阶段路径规划","authors":"Babak Salamat;Sebastian-Sven Olzem;Gerhard Elsbacher;Andrea M. Tonello","doi":"10.1109/OJCSYS.2024.3435080","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the \n<italic>Global Multi-Phase Path Planning</i>\n (\n<monospace><inline-formula><tex-math>$GMP^{3}$</tex-math></inline-formula></monospace>\n) algorithm in planner problems, which computes fast and feasible trajectories in environments with obstacles, considering physical and kinematic constraints. Our approach utilizes a Markov Decision Process (MDP) framework and high-level reinforcement learning techniques to ensure trajectory smoothness, continuity, and compliance with constraints. Through extensive simulations, we demonstrate the algorithm's effectiveness and efficiency across various scenarios. We highlight existing path planning challenges, particularly in integrating dynamic adaptability and computational efficiency. The results validate our method's convergence guarantees using Lyapunov’s stability theorem and underscore its computational advantages.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"405-415"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613437","citationCount":"0","resultStr":"{\"title\":\"Global Multi-Phase Path Planning Through High-Level Reinforcement Learning\",\"authors\":\"Babak Salamat;Sebastian-Sven Olzem;Gerhard Elsbacher;Andrea M. Tonello\",\"doi\":\"10.1109/OJCSYS.2024.3435080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the \\n<italic>Global Multi-Phase Path Planning</i>\\n (\\n<monospace><inline-formula><tex-math>$GMP^{3}$</tex-math></inline-formula></monospace>\\n) algorithm in planner problems, which computes fast and feasible trajectories in environments with obstacles, considering physical and kinematic constraints. Our approach utilizes a Markov Decision Process (MDP) framework and high-level reinforcement learning techniques to ensure trajectory smoothness, continuity, and compliance with constraints. Through extensive simulations, we demonstrate the algorithm's effectiveness and efficiency across various scenarios. We highlight existing path planning challenges, particularly in integrating dynamic adaptability and computational efficiency. The results validate our method's convergence guarantees using Lyapunov’s stability theorem and underscore its computational advantages.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"3 \",\"pages\":\"405-415\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613437\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10613437/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10613437/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了规划器问题中的全局多阶段路径规划($GMP^{3}$)算法,它可以在有障碍物的环境中计算快速可行的轨迹,同时考虑物理和运动学约束。我们的方法利用马尔可夫决策过程(MDP)框架和高级强化学习技术来确保轨迹的平滑性、连续性并符合约束条件。通过大量模拟,我们展示了该算法在各种场景下的有效性和效率。我们强调了现有路径规划所面临的挑战,尤其是在动态适应性和计算效率的整合方面。结果利用 Lyapunov 稳定性定理验证了我们方法的收敛性保证,并强调了其计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
In this paper, we introduce the Global Multi-Phase Path Planning ( $GMP^{3}$ ) algorithm in planner problems, which computes fast and feasible trajectories in environments with obstacles, considering physical and kinematic constraints. Our approach utilizes a Markov Decision Process (MDP) framework and high-level reinforcement learning techniques to ensure trajectory smoothness, continuity, and compliance with constraints. Through extensive simulations, we demonstrate the algorithm's effectiveness and efficiency across various scenarios. We highlight existing path planning challenges, particularly in integrating dynamic adaptability and computational efficiency. The results validate our method's convergence guarantees using Lyapunov’s stability theorem and underscore its computational advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信