在 AgBiS2 纳米晶体上进行原位表面金属钝化以实现陷波还原反相太阳能电池

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Bosen Zou, Dezhang Chen*, Memoona Qammar, Pengbo Ding, Pui Kei Ko, Weiwei Wu, Sunil B. Shivarudraiah, He Yan and Jonathan E. Halpert*, 
{"title":"在 AgBiS2 纳米晶体上进行原位表面金属钝化以实现陷波还原反相太阳能电池","authors":"Bosen Zou,&nbsp;Dezhang Chen*,&nbsp;Memoona Qammar,&nbsp;Pengbo Ding,&nbsp;Pui Kei Ko,&nbsp;Weiwei Wu,&nbsp;Sunil B. Shivarudraiah,&nbsp;He Yan and Jonathan E. Halpert*,&nbsp;","doi":"10.1021/acsaem.4c0130710.1021/acsaem.4c01307","DOIUrl":null,"url":null,"abstract":"<p >Silver bismuth sulfide (AgBiS<sub>2</sub>) nanocrystal (NC) is a third-generation photovoltaic material used in solution-processed solar cells. During the NC purification process, the loss of surface ligand induces surface traps, leads to NC aggregation, and damages the device performance and operation stability. To address this issue, we employed an in situ metal passivation strategy for AgBiS<sub>2</sub> NCs to passivate the NC surface and protect the NCs from ligand dissociation. Our findings suggested that sodium is particularly effective in improving the solar cell performance by forming a protective shell on the surface, which passivates traps and inhibits trap recombination pathways. Quantitative NMR spectroscopy proves that the sodium-rich surface can bind with a higher density of oleate ligands after purification, resulting in a trap-reduced, robust thin film, which can further generate a higher photocurrent in the solar cells. The champion device achieved a short-circuit current density (<i>J</i><sub>SC</sub>) over 24 mA cm<sup>–2</sup> and light-soaking stability over 240 h, making it one of the best-performing p–i–n AgBiS<sub>2</sub> solar cells with superior photostability. Our metal-passivation study offers an alternative approach to synthesize trap-reduced AgBiS<sub>2</sub> NCs and fabricate high-performance solar cells.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 19","pages":"8271–8277 8271–8277"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Surface Metal Passivation on AgBiS2 Nanocrystals for Trap-Reduced Inverted Solar Cells\",\"authors\":\"Bosen Zou,&nbsp;Dezhang Chen*,&nbsp;Memoona Qammar,&nbsp;Pengbo Ding,&nbsp;Pui Kei Ko,&nbsp;Weiwei Wu,&nbsp;Sunil B. Shivarudraiah,&nbsp;He Yan and Jonathan E. Halpert*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0130710.1021/acsaem.4c01307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silver bismuth sulfide (AgBiS<sub>2</sub>) nanocrystal (NC) is a third-generation photovoltaic material used in solution-processed solar cells. During the NC purification process, the loss of surface ligand induces surface traps, leads to NC aggregation, and damages the device performance and operation stability. To address this issue, we employed an in situ metal passivation strategy for AgBiS<sub>2</sub> NCs to passivate the NC surface and protect the NCs from ligand dissociation. Our findings suggested that sodium is particularly effective in improving the solar cell performance by forming a protective shell on the surface, which passivates traps and inhibits trap recombination pathways. Quantitative NMR spectroscopy proves that the sodium-rich surface can bind with a higher density of oleate ligands after purification, resulting in a trap-reduced, robust thin film, which can further generate a higher photocurrent in the solar cells. The champion device achieved a short-circuit current density (<i>J</i><sub>SC</sub>) over 24 mA cm<sup>–2</sup> and light-soaking stability over 240 h, making it one of the best-performing p–i–n AgBiS<sub>2</sub> solar cells with superior photostability. Our metal-passivation study offers an alternative approach to synthesize trap-reduced AgBiS<sub>2</sub> NCs and fabricate high-performance solar cells.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 19\",\"pages\":\"8271–8277 8271–8277\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01307\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01307","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化银铋(AgBiS2)纳米晶体(NC)是第三代光伏材料,用于溶液法太阳能电池。在 NC 的纯化过程中,表面配体的损失会诱发表面陷阱,导致 NC 聚集,从而损害器件的性能和运行稳定性。为解决这一问题,我们对 AgBiS2 NC 采用了原位金属钝化策略,以钝化 NC 表面并保护 NC 免受配体解离。我们的研究结果表明,钠能在表面形成保护壳,钝化陷阱并抑制陷阱重组途径,从而特别有效地提高太阳能电池的性能。定量核磁共振光谱证明,富含钠的表面在纯化后能与密度更高的油酸配体结合,从而形成陷阱减少的坚固薄膜,并能进一步在太阳能电池中产生更高的光电流。冠军器件的短路电流密度(JSC)超过 24 mA cm-2,光浸泡稳定性超过 240 h,是性能最好的 pi-n AgBiS2 太阳能电池之一,具有卓越的光稳定性。我们的金属钝化研究为合成陷阱还原的 AgBiS2 NCs 和制造高性能太阳能电池提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Surface Metal Passivation on AgBiS2 Nanocrystals for Trap-Reduced Inverted Solar Cells

In Situ Surface Metal Passivation on AgBiS2 Nanocrystals for Trap-Reduced Inverted Solar Cells

Silver bismuth sulfide (AgBiS2) nanocrystal (NC) is a third-generation photovoltaic material used in solution-processed solar cells. During the NC purification process, the loss of surface ligand induces surface traps, leads to NC aggregation, and damages the device performance and operation stability. To address this issue, we employed an in situ metal passivation strategy for AgBiS2 NCs to passivate the NC surface and protect the NCs from ligand dissociation. Our findings suggested that sodium is particularly effective in improving the solar cell performance by forming a protective shell on the surface, which passivates traps and inhibits trap recombination pathways. Quantitative NMR spectroscopy proves that the sodium-rich surface can bind with a higher density of oleate ligands after purification, resulting in a trap-reduced, robust thin film, which can further generate a higher photocurrent in the solar cells. The champion device achieved a short-circuit current density (JSC) over 24 mA cm–2 and light-soaking stability over 240 h, making it one of the best-performing p–i–n AgBiS2 solar cells with superior photostability. Our metal-passivation study offers an alternative approach to synthesize trap-reduced AgBiS2 NCs and fabricate high-performance solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信