利用技术开展家畜研究:绵羊行为在线监测系统

V. Cabrera;A. Delbuggio;H. Cardoso;D. Fraga;A. Gómez;M. Pedemonte;R. Ungerfeld;J. Oreggioni
{"title":"利用技术开展家畜研究:绵羊行为在线监测系统","authors":"V. Cabrera;A. Delbuggio;H. Cardoso;D. Fraga;A. Gómez;M. Pedemonte;R. Ungerfeld;J. Oreggioni","doi":"10.1109/TAFE.2024.3416414","DOIUrl":null,"url":null,"abstract":"Sheep production in extensive conditions faces several challenges. These challenges could be addressed with behavior monitoring systems, contributing to animal well-being, enhancing animal research, and improving productivity. This article presents the design, manufacture, and test of an online sheep behavior monitoring system for extensive conditions. It comprises a wearable electronic collar device and a cloud server (deployed with Amazon Web Services) for storing data and providing a web user interface. The collar has an Icarus Internet of Things (IoT) Board, allowing motion data collection with a three-axis accelerometer, global navigation satellite system (GNSS) location data acquisition, and narrowband IoT communication. The device has solar panels and a battery. Our application acquires accelerometer data at 25 Hz, location data every 10–30 s, and battery level and cellular signal strength every 50 s. We encoded accelerometer samples to reduce the transmitted data. We manufactured 30 collars that collect and transmit data to the cloud server. Our system facilitates data processing, both collar and server side. We introduce a preliminary Random Forest algorithm for behavior classification on the device that identifies “still,” “walking,” and “running” with a 78% general accuracy. The device's autonomy exceeds ten days in continuous operation (streaming raw and processed data) while if the device transmits only processed data and GNSS data every 4 h, autonomy rises to 100 days. This allows us to glimpse the application of this system in long-term research experiments and farming production.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"306-313"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Technology for Livestock Research: An Online Sheep Behavior Monitoring System\",\"authors\":\"V. Cabrera;A. Delbuggio;H. Cardoso;D. Fraga;A. Gómez;M. Pedemonte;R. Ungerfeld;J. Oreggioni\",\"doi\":\"10.1109/TAFE.2024.3416414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sheep production in extensive conditions faces several challenges. These challenges could be addressed with behavior monitoring systems, contributing to animal well-being, enhancing animal research, and improving productivity. This article presents the design, manufacture, and test of an online sheep behavior monitoring system for extensive conditions. It comprises a wearable electronic collar device and a cloud server (deployed with Amazon Web Services) for storing data and providing a web user interface. The collar has an Icarus Internet of Things (IoT) Board, allowing motion data collection with a three-axis accelerometer, global navigation satellite system (GNSS) location data acquisition, and narrowband IoT communication. The device has solar panels and a battery. Our application acquires accelerometer data at 25 Hz, location data every 10–30 s, and battery level and cellular signal strength every 50 s. We encoded accelerometer samples to reduce the transmitted data. We manufactured 30 collars that collect and transmit data to the cloud server. Our system facilitates data processing, both collar and server side. We introduce a preliminary Random Forest algorithm for behavior classification on the device that identifies “still,” “walking,” and “running” with a 78% general accuracy. The device's autonomy exceeds ten days in continuous operation (streaming raw and processed data) while if the device transmits only processed data and GNSS data every 4 h, autonomy rises to 100 days. This allows us to glimpse the application of this system in long-term research experiments and farming production.\",\"PeriodicalId\":100637,\"journal\":{\"name\":\"IEEE Transactions on AgriFood Electronics\",\"volume\":\"2 2\",\"pages\":\"306-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on AgriFood Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10589667/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10589667/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模条件下的绵羊生产面临着若干挑战。这些挑战可以通过行为监测系统来解决,从而促进动物福利、加强动物研究和提高生产率。本文介绍了一种适用于大范围条件下的在线绵羊行为监测系统的设计、制造和测试。该系统包括一个可穿戴电子项圈设备和一个云服务器(通过亚马逊网络服务部署),用于存储数据和提供网络用户界面。项圈上有一个伊卡洛斯物联网(IoT)板,可通过三轴加速度计采集运动数据、全球导航卫星系统(GNSS)定位数据采集和窄带物联网通信。该设备配有太阳能电池板和电池。我们的应用以 25 Hz 的频率采集加速度计数据,每 10-30 秒采集一次位置数据,每 50 秒采集一次电池电量和蜂窝信号强度。我们制造了 30 个项圈,用于收集数据并将数据传输到云服务器。我们的系统为项圈和服务器端的数据处理提供了便利。我们在设备上引入了一种用于行为分类的初步随机森林算法,该算法可识别 "静止"、"行走 "和 "奔跑",一般准确率为 78%。在连续运行(流式传输原始数据和处理数据)的情况下,设备的自主运行时间超过十天,而如果设备每隔 4 小时只传输处理数据和全球导航卫星系统数据,自主运行时间将上升到 100 天。这让我们看到了该系统在长期研究实验和农业生产中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing Technology for Livestock Research: An Online Sheep Behavior Monitoring System
Sheep production in extensive conditions faces several challenges. These challenges could be addressed with behavior monitoring systems, contributing to animal well-being, enhancing animal research, and improving productivity. This article presents the design, manufacture, and test of an online sheep behavior monitoring system for extensive conditions. It comprises a wearable electronic collar device and a cloud server (deployed with Amazon Web Services) for storing data and providing a web user interface. The collar has an Icarus Internet of Things (IoT) Board, allowing motion data collection with a three-axis accelerometer, global navigation satellite system (GNSS) location data acquisition, and narrowband IoT communication. The device has solar panels and a battery. Our application acquires accelerometer data at 25 Hz, location data every 10–30 s, and battery level and cellular signal strength every 50 s. We encoded accelerometer samples to reduce the transmitted data. We manufactured 30 collars that collect and transmit data to the cloud server. Our system facilitates data processing, both collar and server side. We introduce a preliminary Random Forest algorithm for behavior classification on the device that identifies “still,” “walking,” and “running” with a 78% general accuracy. The device's autonomy exceeds ten days in continuous operation (streaming raw and processed data) while if the device transmits only processed data and GNSS data every 4 h, autonomy rises to 100 days. This allows us to glimpse the application of this system in long-term research experiments and farming production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信