原位固相合成用于高性能钠离子储能设备的 CoZnSe/CNT 纳米复合材料

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yulian He, Deyi Zhang*, Yang Li, Zheyuan Li, Yixuan Li, Bing Wang, Youzhi Cao, Kunjie Wang and Hongxia Li, 
{"title":"原位固相合成用于高性能钠离子储能设备的 CoZnSe/CNT 纳米复合材料","authors":"Yulian He,&nbsp;Deyi Zhang*,&nbsp;Yang Li,&nbsp;Zheyuan Li,&nbsp;Yixuan Li,&nbsp;Bing Wang,&nbsp;Youzhi Cao,&nbsp;Kunjie Wang and Hongxia Li,&nbsp;","doi":"10.1021/acsaem.4c0141510.1021/acsaem.4c01415","DOIUrl":null,"url":null,"abstract":"<p >The development of effective strategies to accelerate the diffusion kinetics of Na<sup>+</sup> ions and improve the cycle stability of electrode materials is crucial for high-performance sodium-ion energy storage devices. In this article, we present a one-step in situ solid-phase synthesis method for preparing CoZnSe/CNT nanocomposites to address the inherent defects of traditional solid-phase synthesis methods. The three-dimensional (3D) framework constructed from CNTs provides a highly conductive substance, enabling the formation of CoZnSe/CNT nanocomposites with high conductivity, fast Na<sup>+</sup> diffusion kinetics, and excellent cycle stability, ensuring good performance in both sodium-ion batteries and hybrid supercapacitors. The synthesized CoZnSe/CNT nanocomposite delivers a high reversible specific capacity of 433.14 mAh g<sup>–1</sup> at 0.1 A g<sup>–1</sup> and 280.3 mAh g<sup>–1</sup> at 5.0 A g<sup>–1</sup> when applied in a sodium-ion half-cell device. The assembled sodium-ion hybrid supercapacitor device shows a long cycle life and high capacity retention even at high current density. A high energy density of 152.96 Wh kg<sup>–1</sup> can be delivered at a power density of 2.16 kW kg<sup>–1</sup> with 70.4 Wh kg<sup>–1</sup> delivered even at a high power density of 36 kW kg<sup>–1</sup>. A capacity retention rate of more than 79.61% is achieved after 6000 cycles at 1 A g<sup>–1</sup>. The CoZnSe/CNT nanocomposite prepared by the proposed method exhibits excellent performance in sodium-ion energy storage devices, comparable to that achieved by liquid-phase synthesis methods, demonstrating its significant advantages and promising application prospects for the synthesis of high-performance sodium-ion energy storage materials.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 19","pages":"8489–8502 8489–8502"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Solid-Phase Synthesis of CoZnSe/CNT Nanocomposites for High-Performance Sodium-Ion Energy Storage Devices\",\"authors\":\"Yulian He,&nbsp;Deyi Zhang*,&nbsp;Yang Li,&nbsp;Zheyuan Li,&nbsp;Yixuan Li,&nbsp;Bing Wang,&nbsp;Youzhi Cao,&nbsp;Kunjie Wang and Hongxia Li,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0141510.1021/acsaem.4c01415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of effective strategies to accelerate the diffusion kinetics of Na<sup>+</sup> ions and improve the cycle stability of electrode materials is crucial for high-performance sodium-ion energy storage devices. In this article, we present a one-step in situ solid-phase synthesis method for preparing CoZnSe/CNT nanocomposites to address the inherent defects of traditional solid-phase synthesis methods. The three-dimensional (3D) framework constructed from CNTs provides a highly conductive substance, enabling the formation of CoZnSe/CNT nanocomposites with high conductivity, fast Na<sup>+</sup> diffusion kinetics, and excellent cycle stability, ensuring good performance in both sodium-ion batteries and hybrid supercapacitors. The synthesized CoZnSe/CNT nanocomposite delivers a high reversible specific capacity of 433.14 mAh g<sup>–1</sup> at 0.1 A g<sup>–1</sup> and 280.3 mAh g<sup>–1</sup> at 5.0 A g<sup>–1</sup> when applied in a sodium-ion half-cell device. The assembled sodium-ion hybrid supercapacitor device shows a long cycle life and high capacity retention even at high current density. A high energy density of 152.96 Wh kg<sup>–1</sup> can be delivered at a power density of 2.16 kW kg<sup>–1</sup> with 70.4 Wh kg<sup>–1</sup> delivered even at a high power density of 36 kW kg<sup>–1</sup>. A capacity retention rate of more than 79.61% is achieved after 6000 cycles at 1 A g<sup>–1</sup>. The CoZnSe/CNT nanocomposite prepared by the proposed method exhibits excellent performance in sodium-ion energy storage devices, comparable to that achieved by liquid-phase synthesis methods, demonstrating its significant advantages and promising application prospects for the synthesis of high-performance sodium-ion energy storage materials.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 19\",\"pages\":\"8489–8502 8489–8502\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01415\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01415","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发加速 Na+ 离子扩散动力学和提高电极材料循环稳定性的有效策略对于高性能钠离子储能装置至关重要。本文针对传统固相合成方法的固有缺陷,提出了一种一步法原位固相合成制备 CoZnSe/CNT 纳米复合材料的方法。由 CNT 构建的三维(3D)框架提供了一种高导电性物质,使 CoZnSe/CNT 纳米复合材料具有高导电性、快速 Na+ 扩散动力学和优异的循环稳定性,从而确保其在钠离子电池和混合超级电容器中的良好性能。合成的 CoZnSe/CNT 纳米复合材料应用于钠离子半电池装置时,在 0.1 A g-1 电流条件下可实现 433.14 mAh g-1 的高可逆比容量,在 5.0 A g-1 电流条件下可实现 280.3 mAh g-1 的高可逆比容量。组装后的钠离子混合超级电容器装置即使在高电流密度下也能显示出较长的循环寿命和较高的容量保持率。在 2.16 kW kg-1 的功率密度下,可提供 152.96 Wh kg-1 的高能量密度,即使在 36 kW kg-1 的高功率密度下,也能提供 70.4 Wh kg-1 的能量密度。在 1 A g-1 条件下循环 6000 次后,容量保持率超过 79.61%。采用该方法制备的 CoZnSe/CNT 纳米复合材料在钠离子储能装置中表现出优异的性能,可与液相合成方法相媲美,在合成高性能钠离子储能材料方面具有显著优势和广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Solid-Phase Synthesis of CoZnSe/CNT Nanocomposites for High-Performance Sodium-Ion Energy Storage Devices

In Situ Solid-Phase Synthesis of CoZnSe/CNT Nanocomposites for High-Performance Sodium-Ion Energy Storage Devices

The development of effective strategies to accelerate the diffusion kinetics of Na+ ions and improve the cycle stability of electrode materials is crucial for high-performance sodium-ion energy storage devices. In this article, we present a one-step in situ solid-phase synthesis method for preparing CoZnSe/CNT nanocomposites to address the inherent defects of traditional solid-phase synthesis methods. The three-dimensional (3D) framework constructed from CNTs provides a highly conductive substance, enabling the formation of CoZnSe/CNT nanocomposites with high conductivity, fast Na+ diffusion kinetics, and excellent cycle stability, ensuring good performance in both sodium-ion batteries and hybrid supercapacitors. The synthesized CoZnSe/CNT nanocomposite delivers a high reversible specific capacity of 433.14 mAh g–1 at 0.1 A g–1 and 280.3 mAh g–1 at 5.0 A g–1 when applied in a sodium-ion half-cell device. The assembled sodium-ion hybrid supercapacitor device shows a long cycle life and high capacity retention even at high current density. A high energy density of 152.96 Wh kg–1 can be delivered at a power density of 2.16 kW kg–1 with 70.4 Wh kg–1 delivered even at a high power density of 36 kW kg–1. A capacity retention rate of more than 79.61% is achieved after 6000 cycles at 1 A g–1. The CoZnSe/CNT nanocomposite prepared by the proposed method exhibits excellent performance in sodium-ion energy storage devices, comparable to that achieved by liquid-phase synthesis methods, demonstrating its significant advantages and promising application prospects for the synthesis of high-performance sodium-ion energy storage materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信