Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, Anna Tzyrkalli, George Zittis, Jos Lelieveld
{"title":"利用 Q-GAM 方法对气候模型的日降水量进行偏差校正","authors":"Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, Anna Tzyrkalli, George Zittis, Jos Lelieveld","doi":"10.1002/env.2881","DOIUrl":null,"url":null,"abstract":"<p>Climate models are useful tools for analyzing historical and projecting future climate conditions. However, the model results tend to differ systematically from observations, particularly for parameters with complex spatial and temporal distributions such as precipitation. A combination of quantile mapping and generalized additive models (GAMs) is presented and proposed as a new method (Q-GAM) for the bias correction of daily precipitation. Q-GAM is demonstrated by using data from five European stations with different climate characteristics. For each station, the closest continental grid point of a EURO-CORDEX climate model was selected for bias correction. A bootstrapping experiment is presented with over 1000 repetitions of randomly splitting the historical period 1981 to 2005 into a calibration and evaluation period. The results for all stations reveal that Q-GAM is a straightforward, accurate and computationally efficient method for the bias correction of precipitation. In particular, the method improves the frequency of dry days and the total annual rainfall amount. This outcome is robust across stations with varying climate characteristics and also to the choice of calibration and evaluation periods. Similar results are also obtained for other precipitation characteristics such as the 0.9 and 0.95 quantiles.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2881","citationCount":"0","resultStr":"{\"title\":\"Bias correction of daily precipitation from climate models, using the Q-GAM method\",\"authors\":\"Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, Anna Tzyrkalli, George Zittis, Jos Lelieveld\",\"doi\":\"10.1002/env.2881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate models are useful tools for analyzing historical and projecting future climate conditions. However, the model results tend to differ systematically from observations, particularly for parameters with complex spatial and temporal distributions such as precipitation. A combination of quantile mapping and generalized additive models (GAMs) is presented and proposed as a new method (Q-GAM) for the bias correction of daily precipitation. Q-GAM is demonstrated by using data from five European stations with different climate characteristics. For each station, the closest continental grid point of a EURO-CORDEX climate model was selected for bias correction. A bootstrapping experiment is presented with over 1000 repetitions of randomly splitting the historical period 1981 to 2005 into a calibration and evaluation period. The results for all stations reveal that Q-GAM is a straightforward, accurate and computationally efficient method for the bias correction of precipitation. In particular, the method improves the frequency of dry days and the total annual rainfall amount. This outcome is robust across stations with varying climate characteristics and also to the choice of calibration and evaluation periods. Similar results are also obtained for other precipitation characteristics such as the 0.9 and 0.95 quantiles.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2881\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2881\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2881","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bias correction of daily precipitation from climate models, using the Q-GAM method
Climate models are useful tools for analyzing historical and projecting future climate conditions. However, the model results tend to differ systematically from observations, particularly for parameters with complex spatial and temporal distributions such as precipitation. A combination of quantile mapping and generalized additive models (GAMs) is presented and proposed as a new method (Q-GAM) for the bias correction of daily precipitation. Q-GAM is demonstrated by using data from five European stations with different climate characteristics. For each station, the closest continental grid point of a EURO-CORDEX climate model was selected for bias correction. A bootstrapping experiment is presented with over 1000 repetitions of randomly splitting the historical period 1981 to 2005 into a calibration and evaluation period. The results for all stations reveal that Q-GAM is a straightforward, accurate and computationally efficient method for the bias correction of precipitation. In particular, the method improves the frequency of dry days and the total annual rainfall amount. This outcome is robust across stations with varying climate characteristics and also to the choice of calibration and evaluation periods. Similar results are also obtained for other precipitation characteristics such as the 0.9 and 0.95 quantiles.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.