S. M. Raposa, A. E. Engle, S. P. Tan, W. M. Grundy, J. Hanley, G. E. Lindberg, O. M. Umurhan, J. K. Steckloff, C. L. Thieberger, S. C. Tegler
{"title":"低温二元混合物冷却时的爆发:实验及其行星影响","authors":"S. M. Raposa, A. E. Engle, S. P. Tan, W. M. Grundy, J. Hanley, G. E. Lindberg, O. M. Umurhan, J. K. Steckloff, C. L. Thieberger, S. C. Tegler","doi":"10.1029/2024JE008457","DOIUrl":null,"url":null,"abstract":"<p>For many binary mixtures, the three-phase solid-liquid-vapor equilibrium curve has intermediate pressures that are higher than the pressure at the two pure triple points. This curve shape results in a negative slope in the high-temperature region near the triple point of the less volatile component. When freezing mixtures in the negative slope regime, fluid trapped below confined ice has latent heat released with more vapor upon cooling, and thus increases in pressure. If the rising pressure of the confined fluid overcomes the strength of the confining solid, which may be its own ice, it can produce an abrupt outburst of material and an increase in the system's overall pressure. Here, we report experimental results of freezing-induced outbursts occurring in the N<sub>2</sub>/CH<sub>4</sub>, CO/CH<sub>4</sub>, and N<sub>2</sub>/C<sub>2</sub>H<sub>6</sub> systems, and provide insight into the phenomenon through a thermodynamics perspective. We also propose other binary systems that may experience outbursts and explore the geological implications for icy worlds such as Titan, Triton, Pluto and Eris as well as rocky bodies, specifically Earth and Mars.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outbursts Upon Cooling of Low-Temperature Binary Mixtures: Experiments and Their Planetary Implications\",\"authors\":\"S. M. Raposa, A. E. Engle, S. P. Tan, W. M. Grundy, J. Hanley, G. E. Lindberg, O. M. Umurhan, J. K. Steckloff, C. L. Thieberger, S. C. Tegler\",\"doi\":\"10.1029/2024JE008457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For many binary mixtures, the three-phase solid-liquid-vapor equilibrium curve has intermediate pressures that are higher than the pressure at the two pure triple points. This curve shape results in a negative slope in the high-temperature region near the triple point of the less volatile component. When freezing mixtures in the negative slope regime, fluid trapped below confined ice has latent heat released with more vapor upon cooling, and thus increases in pressure. If the rising pressure of the confined fluid overcomes the strength of the confining solid, which may be its own ice, it can produce an abrupt outburst of material and an increase in the system's overall pressure. Here, we report experimental results of freezing-induced outbursts occurring in the N<sub>2</sub>/CH<sub>4</sub>, CO/CH<sub>4</sub>, and N<sub>2</sub>/C<sub>2</sub>H<sub>6</sub> systems, and provide insight into the phenomenon through a thermodynamics perspective. We also propose other binary systems that may experience outbursts and explore the geological implications for icy worlds such as Titan, Triton, Pluto and Eris as well as rocky bodies, specifically Earth and Mars.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008457\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008457","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Outbursts Upon Cooling of Low-Temperature Binary Mixtures: Experiments and Their Planetary Implications
For many binary mixtures, the three-phase solid-liquid-vapor equilibrium curve has intermediate pressures that are higher than the pressure at the two pure triple points. This curve shape results in a negative slope in the high-temperature region near the triple point of the less volatile component. When freezing mixtures in the negative slope regime, fluid trapped below confined ice has latent heat released with more vapor upon cooling, and thus increases in pressure. If the rising pressure of the confined fluid overcomes the strength of the confining solid, which may be its own ice, it can produce an abrupt outburst of material and an increase in the system's overall pressure. Here, we report experimental results of freezing-induced outbursts occurring in the N2/CH4, CO/CH4, and N2/C2H6 systems, and provide insight into the phenomenon through a thermodynamics perspective. We also propose other binary systems that may experience outbursts and explore the geological implications for icy worlds such as Titan, Triton, Pluto and Eris as well as rocky bodies, specifically Earth and Mars.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.