机器学习辅助智能合成 UiO-66(Ce):平衡结构缺陷与热稳定性之间的权衡,实现双环戊二烯的高效氢化

Jing Lin, Tao Ban, Tian Li, Ye Sun, Shenglan Zhou, Rushuo Li, Yanjing Su, Jitti Kasemchainan, Hongyi Gao, Lei Shi, Ge Wang
{"title":"机器学习辅助智能合成 UiO-66(Ce):平衡结构缺陷与热稳定性之间的权衡,实现双环戊二烯的高效氢化","authors":"Jing Lin,&nbsp;Tao Ban,&nbsp;Tian Li,&nbsp;Ye Sun,&nbsp;Shenglan Zhou,&nbsp;Rushuo Li,&nbsp;Yanjing Su,&nbsp;Jitti Kasemchainan,&nbsp;Hongyi Gao,&nbsp;Lei Shi,&nbsp;Ge Wang","doi":"10.1002/mgea.61","DOIUrl":null,"url":null,"abstract":"<p>Metal-organic frameworks (MOFs), renowned for structural diversity and design flexibility, exhibit potential in catalysis. However, the pursuit of higher catalytic activity through defects often compromises stability, requiring a delicate balance. Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient. Herein, taking the typical MOF UiO-66(Ce) as an illustrative example, a closed loop workflow is built, which integrates machine learning (ML)-assissted prediction, multi-objective optimization (MOO) and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene (DCPD). An automatic data extraction program ensures data accuracy, establishing a high-quality database. ML is employed to explore the intricate synthesis-structure-property correlations, enabling precise delineation of pure-phase subspace and accurate predictions of properties. After two iterations, MOO model identifies optimal protocols for high defect content (&gt;40%) and thermal stability (&gt;300°C). The optimized UiO-66(Ce) exhibits superior catalytic performance in hydrogenation of DCPD, validating the precision and reliability of our methodology. This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.61","citationCount":"0","resultStr":"{\"title\":\"Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene\",\"authors\":\"Jing Lin,&nbsp;Tao Ban,&nbsp;Tian Li,&nbsp;Ye Sun,&nbsp;Shenglan Zhou,&nbsp;Rushuo Li,&nbsp;Yanjing Su,&nbsp;Jitti Kasemchainan,&nbsp;Hongyi Gao,&nbsp;Lei Shi,&nbsp;Ge Wang\",\"doi\":\"10.1002/mgea.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal-organic frameworks (MOFs), renowned for structural diversity and design flexibility, exhibit potential in catalysis. However, the pursuit of higher catalytic activity through defects often compromises stability, requiring a delicate balance. Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient. Herein, taking the typical MOF UiO-66(Ce) as an illustrative example, a closed loop workflow is built, which integrates machine learning (ML)-assissted prediction, multi-objective optimization (MOO) and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene (DCPD). An automatic data extraction program ensures data accuracy, establishing a high-quality database. ML is employed to explore the intricate synthesis-structure-property correlations, enabling precise delineation of pure-phase subspace and accurate predictions of properties. After two iterations, MOO model identifies optimal protocols for high defect content (&gt;40%) and thermal stability (&gt;300°C). The optimized UiO-66(Ce) exhibits superior catalytic performance in hydrogenation of DCPD, validating the precision and reliability of our methodology. This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.61\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)以结构多样性和设计灵活性而著称,在催化方面具有潜力。然而,通过缺陷来追求更高的催化活性往往会损害稳定性,这就需要一种微妙的平衡。在复杂化学空间内优化合成参数的传统试错法效率低下。本文以典型的 MOF UiO-66(Ce)为例,建立了一个闭环工作流程,将机器学习(ML)-缺陷预测、多目标优化(MOO)和实验制备整合在一起,协同优化 UiO-66(Ce)的缺陷含量和热稳定性,从而实现双环戊二烯(DCPD)的高效氢化。自动数据提取程序确保了数据的准确性,从而建立了一个高质量的数据库。采用 ML 方法探索错综复杂的合成-结构-性能相关性,从而实现纯相子空间的精确划分和性能的准确预测。经过两次迭代,MOO 模型确定了高缺陷含量(40%)和热稳定性(300°C)的最佳方案。优化后的 UiO-66(Ce)在二氯二苯并二噁英的氢化过程中表现出卓越的催化性能,验证了我们方法的精确性和可靠性。这种 ML 辅助方法为解决材料领域的权衡之谜提供了一个宝贵的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene

Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene

Metal-organic frameworks (MOFs), renowned for structural diversity and design flexibility, exhibit potential in catalysis. However, the pursuit of higher catalytic activity through defects often compromises stability, requiring a delicate balance. Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient. Herein, taking the typical MOF UiO-66(Ce) as an illustrative example, a closed loop workflow is built, which integrates machine learning (ML)-assissted prediction, multi-objective optimization (MOO) and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene (DCPD). An automatic data extraction program ensures data accuracy, establishing a high-quality database. ML is employed to explore the intricate synthesis-structure-property correlations, enabling precise delineation of pure-phase subspace and accurate predictions of properties. After two iterations, MOO model identifies optimal protocols for high defect content (>40%) and thermal stability (>300°C). The optimized UiO-66(Ce) exhibits superior catalytic performance in hydrogenation of DCPD, validating the precision and reliability of our methodology. This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信