Alexander Levy , Yifan Zhang , Haoxuan Yan , Anubhav Wadehra , Yu Zhong , Karl Ludwig , Uday Pal
{"title":"用于测量高温熔盐的高通量落球粘度计","authors":"Alexander Levy , Yifan Zhang , Haoxuan Yan , Anubhav Wadehra , Yu Zhong , Karl Ludwig , Uday Pal","doi":"10.1016/j.nucengdes.2024.113612","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for clean energy production and storage has increased interest in molten salt technologies, including Molten Salt Reactors (MSR). Understanding of how molten salts properties change with respect to temperature and structure is vital to establishing efficient, cost effective MSR systems. Research into these materials however has been limited due to the difficulty in accurately measuring properties of these reactive materials at elevated temperatures and controlled environment in a time efficient way. Much research has turned to molecular dynamic (MD) modeling to alleviate these issues. This research presents a custom fabricated falling ball viscometer system for measuring molten salt viscosity quickly. A model for correlating velocity to viscosity for <em>Re</em> < 300 was also developed for use with this system. The viscometer is demonstrated on eutectic FLiNaK and NaF-ZrF4 (53–47 mol%) up to 150 K above the respective melting points. The results are compared to MD simulations to verify their effectiveness for predicting viscosity and previously reported measurements.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"429 ","pages":"Article 113612"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput falling ball viscometer for measuring High-Temperature molten salts\",\"authors\":\"Alexander Levy , Yifan Zhang , Haoxuan Yan , Anubhav Wadehra , Yu Zhong , Karl Ludwig , Uday Pal\",\"doi\":\"10.1016/j.nucengdes.2024.113612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The demand for clean energy production and storage has increased interest in molten salt technologies, including Molten Salt Reactors (MSR). Understanding of how molten salts properties change with respect to temperature and structure is vital to establishing efficient, cost effective MSR systems. Research into these materials however has been limited due to the difficulty in accurately measuring properties of these reactive materials at elevated temperatures and controlled environment in a time efficient way. Much research has turned to molecular dynamic (MD) modeling to alleviate these issues. This research presents a custom fabricated falling ball viscometer system for measuring molten salt viscosity quickly. A model for correlating velocity to viscosity for <em>Re</em> < 300 was also developed for use with this system. The viscometer is demonstrated on eutectic FLiNaK and NaF-ZrF4 (53–47 mol%) up to 150 K above the respective melting points. The results are compared to MD simulations to verify their effectiveness for predicting viscosity and previously reported measurements.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"429 \",\"pages\":\"Article 113612\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002954932400712X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002954932400712X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
High-Throughput falling ball viscometer for measuring High-Temperature molten salts
The demand for clean energy production and storage has increased interest in molten salt technologies, including Molten Salt Reactors (MSR). Understanding of how molten salts properties change with respect to temperature and structure is vital to establishing efficient, cost effective MSR systems. Research into these materials however has been limited due to the difficulty in accurately measuring properties of these reactive materials at elevated temperatures and controlled environment in a time efficient way. Much research has turned to molecular dynamic (MD) modeling to alleviate these issues. This research presents a custom fabricated falling ball viscometer system for measuring molten salt viscosity quickly. A model for correlating velocity to viscosity for Re < 300 was also developed for use with this system. The viscometer is demonstrated on eutectic FLiNaK and NaF-ZrF4 (53–47 mol%) up to 150 K above the respective melting points. The results are compared to MD simulations to verify their effectiveness for predicting viscosity and previously reported measurements.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.