Abdullahi Ibrahim Uba , Nicholas Joseph Paradis , Chun Wu , Gokhan Zengin
{"title":"作为潜在 5A 型磷酸二酯酶抑制剂的天然化合物的计算分析","authors":"Abdullahi Ibrahim Uba , Nicholas Joseph Paradis , Chun Wu , Gokhan Zengin","doi":"10.1016/j.compbiolchem.2024.108239","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphodiesterase type 5 (PDE5) is a cyclic nucleotide-hydrolyzing enzyme that plays essential roles in the regulation of second messenger cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) produced in response to various stimuli. Pharmacological inhibition of PDE5 has been shown to have several therapeutic uses, including treating cardiovascular diseases and erectile dysfunction. In search of PDE5A inhibitors with safer pharmacokinetic properties, computational analyses of the binding propensity of fifty natural compounds comprising flavonoids, polyphenols, and glycosides were conducted. Molecular dynamics simulation coupled with Molecular mechanics with generalized Born and surface area solvation (MM/GBSA) showed that verbascoside may inhibit the activity of PDE5 with a comparative binding energy (ΔG) of -87.8 ± 9.2<!--> <!-->kcal/mol to that of the cocrystal ligand (PDB ID: 3BJC), having ΔG = -77.7±4.5<!--> <!-->kcal/mol. However, the other top compounds studied were found to have lower binding propensities than the cocrystal ligand WAN: hesperidin (ΔG = -33.8 ± 3.4<!--> <!-->kcal/mol), rutin (ΔG = -23.6 ± 26.3<!--> <!-->kcal/mol), caftaric acid (ΔG = -21.2 ±3.6<!--> <!-->kcal/mol), and chlorogenic acid (ΔG = 6.0 ± 16.5<!--> <!-->kcal/mol). Therefore, verbascoside may serve as a potential PDE5A inhibitor while hesperidin, rutin, and caftaric acid may provide templates for further structural optimization for the designs of safer PDE5 inhibitors.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108239"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of natural compounds as potential phosphodiesterase type 5A inhibitors\",\"authors\":\"Abdullahi Ibrahim Uba , Nicholas Joseph Paradis , Chun Wu , Gokhan Zengin\",\"doi\":\"10.1016/j.compbiolchem.2024.108239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phosphodiesterase type 5 (PDE5) is a cyclic nucleotide-hydrolyzing enzyme that plays essential roles in the regulation of second messenger cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) produced in response to various stimuli. Pharmacological inhibition of PDE5 has been shown to have several therapeutic uses, including treating cardiovascular diseases and erectile dysfunction. In search of PDE5A inhibitors with safer pharmacokinetic properties, computational analyses of the binding propensity of fifty natural compounds comprising flavonoids, polyphenols, and glycosides were conducted. Molecular dynamics simulation coupled with Molecular mechanics with generalized Born and surface area solvation (MM/GBSA) showed that verbascoside may inhibit the activity of PDE5 with a comparative binding energy (ΔG) of -87.8 ± 9.2<!--> <!-->kcal/mol to that of the cocrystal ligand (PDB ID: 3BJC), having ΔG = -77.7±4.5<!--> <!-->kcal/mol. However, the other top compounds studied were found to have lower binding propensities than the cocrystal ligand WAN: hesperidin (ΔG = -33.8 ± 3.4<!--> <!-->kcal/mol), rutin (ΔG = -23.6 ± 26.3<!--> <!-->kcal/mol), caftaric acid (ΔG = -21.2 ±3.6<!--> <!-->kcal/mol), and chlorogenic acid (ΔG = 6.0 ± 16.5<!--> <!-->kcal/mol). Therefore, verbascoside may serve as a potential PDE5A inhibitor while hesperidin, rutin, and caftaric acid may provide templates for further structural optimization for the designs of safer PDE5 inhibitors.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"113 \",\"pages\":\"Article 108239\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124002275\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002275","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Computational analysis of natural compounds as potential phosphodiesterase type 5A inhibitors
Phosphodiesterase type 5 (PDE5) is a cyclic nucleotide-hydrolyzing enzyme that plays essential roles in the regulation of second messenger cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) produced in response to various stimuli. Pharmacological inhibition of PDE5 has been shown to have several therapeutic uses, including treating cardiovascular diseases and erectile dysfunction. In search of PDE5A inhibitors with safer pharmacokinetic properties, computational analyses of the binding propensity of fifty natural compounds comprising flavonoids, polyphenols, and glycosides were conducted. Molecular dynamics simulation coupled with Molecular mechanics with generalized Born and surface area solvation (MM/GBSA) showed that verbascoside may inhibit the activity of PDE5 with a comparative binding energy (ΔG) of -87.8 ± 9.2 kcal/mol to that of the cocrystal ligand (PDB ID: 3BJC), having ΔG = -77.7±4.5 kcal/mol. However, the other top compounds studied were found to have lower binding propensities than the cocrystal ligand WAN: hesperidin (ΔG = -33.8 ± 3.4 kcal/mol), rutin (ΔG = -23.6 ± 26.3 kcal/mol), caftaric acid (ΔG = -21.2 ±3.6 kcal/mol), and chlorogenic acid (ΔG = 6.0 ± 16.5 kcal/mol). Therefore, verbascoside may serve as a potential PDE5A inhibitor while hesperidin, rutin, and caftaric acid may provide templates for further structural optimization for the designs of safer PDE5 inhibitors.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.