稳健随机的稀疏子空间聚类

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanjiao Zhu , Xinrong Li , Xianchao Xiu , Wanquan Liu , Chuancun Yin
{"title":"稳健随机的稀疏子空间聚类","authors":"Yanjiao Zhu ,&nbsp;Xinrong Li ,&nbsp;Xianchao Xiu ,&nbsp;Wanquan Liu ,&nbsp;Chuancun Yin","doi":"10.1016/j.neucom.2024.128703","DOIUrl":null,"url":null,"abstract":"<div><div>Sparse subspace clustering (SSC) has been widely employed in machine learning and pattern recognition, but it still faces scalability challenges when dealing with large-scale datasets. Recently, stochastic SSC (SSSC) has emerged as an effective solution by leveraging the dropout technique. However, SSSC cannot robustly handle noise, especially non-Gaussian noise, leading to unsatisfactory clustering performance. To address the above issues, we propose a novel robust and stochastic method called stochastic sparse subspace clustering with the Huber function (S3CH). The key idea is to introduce the Huber surrogate to measure the loss of the stochastic self-expression framework, thus S3CH inherits the advantage of the stochastic framework for large-scale problems while mitigating sensitivity to non-Gaussian noise. In algorithms, an efficient proximal alternating minimization (PAM)-based optimization scheme is developed. In theory, the convergence of the generated sequence is rigorously proved. Extensive numerical experiments on synthetic and six real datasets validate the advantages of the proposed method in clustering accuracy, noise robustness, parameter sensitivity, post-hoc analysis, and model stability.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and stochastic sparse subspace clustering\",\"authors\":\"Yanjiao Zhu ,&nbsp;Xinrong Li ,&nbsp;Xianchao Xiu ,&nbsp;Wanquan Liu ,&nbsp;Chuancun Yin\",\"doi\":\"10.1016/j.neucom.2024.128703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sparse subspace clustering (SSC) has been widely employed in machine learning and pattern recognition, but it still faces scalability challenges when dealing with large-scale datasets. Recently, stochastic SSC (SSSC) has emerged as an effective solution by leveraging the dropout technique. However, SSSC cannot robustly handle noise, especially non-Gaussian noise, leading to unsatisfactory clustering performance. To address the above issues, we propose a novel robust and stochastic method called stochastic sparse subspace clustering with the Huber function (S3CH). The key idea is to introduce the Huber surrogate to measure the loss of the stochastic self-expression framework, thus S3CH inherits the advantage of the stochastic framework for large-scale problems while mitigating sensitivity to non-Gaussian noise. In algorithms, an efficient proximal alternating minimization (PAM)-based optimization scheme is developed. In theory, the convergence of the generated sequence is rigorously proved. Extensive numerical experiments on synthetic and six real datasets validate the advantages of the proposed method in clustering accuracy, noise robustness, parameter sensitivity, post-hoc analysis, and model stability.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224014747\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224014747","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

稀疏子空间聚类(Sparse subspace clustering,SSC)已被广泛应用于机器学习和模式识别领域,但在处理大规模数据集时,它仍然面临着可扩展性的挑战。最近,随机子空间聚类(SSSC)通过利用剔除技术成为一种有效的解决方案。然而,随机 SSC 无法稳健地处理噪声,尤其是非高斯噪声,导致聚类效果不尽如人意。为解决上述问题,我们提出了一种新颖的鲁棒随机方法,即使用 Huber 函数的随机稀疏子空间聚类(S3CH)。其主要思想是引入 Huber 代理来衡量随机自表达框架的损失,因此 S3CH 继承了随机框架在大规模问题上的优势,同时减轻了对非高斯噪声的敏感性。在算法中,开发了一种基于近端交替最小化(PAM)的高效优化方案。理论上,生成序列的收敛性得到了严格证明。在合成数据集和六个真实数据集上进行的大量数值实验验证了所提方法在聚类精度、噪声鲁棒性、参数敏感性、事后分析和模型稳定性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and stochastic sparse subspace clustering
Sparse subspace clustering (SSC) has been widely employed in machine learning and pattern recognition, but it still faces scalability challenges when dealing with large-scale datasets. Recently, stochastic SSC (SSSC) has emerged as an effective solution by leveraging the dropout technique. However, SSSC cannot robustly handle noise, especially non-Gaussian noise, leading to unsatisfactory clustering performance. To address the above issues, we propose a novel robust and stochastic method called stochastic sparse subspace clustering with the Huber function (S3CH). The key idea is to introduce the Huber surrogate to measure the loss of the stochastic self-expression framework, thus S3CH inherits the advantage of the stochastic framework for large-scale problems while mitigating sensitivity to non-Gaussian noise. In algorithms, an efficient proximal alternating minimization (PAM)-based optimization scheme is developed. In theory, the convergence of the generated sequence is rigorously proved. Extensive numerical experiments on synthetic and six real datasets validate the advantages of the proposed method in clustering accuracy, noise robustness, parameter sensitivity, post-hoc analysis, and model stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信