{"title":"通过平均扩散 LMS 和平均似然比检验进行安全分布式估计","authors":"Hadi Zayyani , Mehdi Korki","doi":"10.1016/j.dsp.2024.104782","DOIUrl":null,"url":null,"abstract":"<div><div>Secure distributed estimation algorithms are designed to protect against a spectrum of attacks by exploring different attack models and implementing strategies to enhance the resilience of the algorithm. These models encompass diverse scenarios such as measurement sensor attacks and communication link attacks, which have been extensively investigated in existing literature. This paper, however, focuses on a specific type of attack: the multiplicative sensor attack model. To counter this, the paper introduces the Average diffusion least mean square (ADLMS) algorithm as a viable solution. Furthermore, the paper introduces the Average Likelihood Ratio Test (ALRT) detector, which provides a straightforward detection criterion. In the presence of communication link attacks, the paper considers the manipulation attack model and presents an ALRT adversary detector. The analysis extends to these ALRT detectors, encompassing the calculation of adversary detection probability and false alarm probability, both achieved in closed form. The paper also provides the mean convergence analysis of the proposed ADLMS algorithm. Simulation results reveal that the proposed algorithms exhibit enhanced performance compared to the DLMS algorithm, while the incremental complexity remains only marginally higher than that of the DLMS algorithm.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104782"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure distributed estimation via an average diffusion LMS and average likelihood ratio test\",\"authors\":\"Hadi Zayyani , Mehdi Korki\",\"doi\":\"10.1016/j.dsp.2024.104782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Secure distributed estimation algorithms are designed to protect against a spectrum of attacks by exploring different attack models and implementing strategies to enhance the resilience of the algorithm. These models encompass diverse scenarios such as measurement sensor attacks and communication link attacks, which have been extensively investigated in existing literature. This paper, however, focuses on a specific type of attack: the multiplicative sensor attack model. To counter this, the paper introduces the Average diffusion least mean square (ADLMS) algorithm as a viable solution. Furthermore, the paper introduces the Average Likelihood Ratio Test (ALRT) detector, which provides a straightforward detection criterion. In the presence of communication link attacks, the paper considers the manipulation attack model and presents an ALRT adversary detector. The analysis extends to these ALRT detectors, encompassing the calculation of adversary detection probability and false alarm probability, both achieved in closed form. The paper also provides the mean convergence analysis of the proposed ADLMS algorithm. Simulation results reveal that the proposed algorithms exhibit enhanced performance compared to the DLMS algorithm, while the incremental complexity remains only marginally higher than that of the DLMS algorithm.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104782\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S105120042400407X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105120042400407X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Secure distributed estimation via an average diffusion LMS and average likelihood ratio test
Secure distributed estimation algorithms are designed to protect against a spectrum of attacks by exploring different attack models and implementing strategies to enhance the resilience of the algorithm. These models encompass diverse scenarios such as measurement sensor attacks and communication link attacks, which have been extensively investigated in existing literature. This paper, however, focuses on a specific type of attack: the multiplicative sensor attack model. To counter this, the paper introduces the Average diffusion least mean square (ADLMS) algorithm as a viable solution. Furthermore, the paper introduces the Average Likelihood Ratio Test (ALRT) detector, which provides a straightforward detection criterion. In the presence of communication link attacks, the paper considers the manipulation attack model and presents an ALRT adversary detector. The analysis extends to these ALRT detectors, encompassing the calculation of adversary detection probability and false alarm probability, both achieved in closed form. The paper also provides the mean convergence analysis of the proposed ADLMS algorithm. Simulation results reveal that the proposed algorithms exhibit enhanced performance compared to the DLMS algorithm, while the incremental complexity remains only marginally higher than that of the DLMS algorithm.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,