利用图像处理解决频谱传感的预处理问题

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Andres Rojas , Gordana Jovanovic Dolecek , José M. de la Rosa
{"title":"利用图像处理解决频谱传感的预处理问题","authors":"Andres Rojas ,&nbsp;Gordana Jovanovic Dolecek ,&nbsp;José M. de la Rosa","doi":"10.1016/j.dsp.2024.104800","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach to preprocessing spectrograms for spectrum sensing (SS) from the image-processing perspective. Gaussian bilateral filtering, a common image-denoising technique, has been introduced to improve spectrograms in SS in high-noise environments. This approach is evaluated by simulating LTE and 5 G NR signal spectrograms across various signal-to-noise ratios (SNRs). An extensive review and comparison with recent spectrogram-based works for different applications demonstrated that the proposed approach does not depend on deep learning models to denoise spectrograms, showing a simpler yet effective strategy to address SS.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104800"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing preprocessing for spectrum sensing using image processing\",\"authors\":\"Andres Rojas ,&nbsp;Gordana Jovanovic Dolecek ,&nbsp;José M. de la Rosa\",\"doi\":\"10.1016/j.dsp.2024.104800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel approach to preprocessing spectrograms for spectrum sensing (SS) from the image-processing perspective. Gaussian bilateral filtering, a common image-denoising technique, has been introduced to improve spectrograms in SS in high-noise environments. This approach is evaluated by simulating LTE and 5 G NR signal spectrograms across various signal-to-noise ratios (SNRs). An extensive review and comparison with recent spectrogram-based works for different applications demonstrated that the proposed approach does not depend on deep learning models to denoise spectrograms, showing a simpler yet effective strategy to address SS.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104800\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004251\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004251","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文从图像处理的角度提出了一种新颖的光谱传感(SS)谱图预处理方法。本文引入了高斯双边滤波这一常见的图像去噪技术,以改进高噪声环境下频谱传感中的频谱图。通过模拟各种信噪比(SNR)下的 LTE 和 5 G NR 信号频谱图,对这种方法进行了评估。通过对不同应用中基于频谱图的最新研究成果进行广泛的回顾和比较,证明所提出的方法并不依赖于深度学习模型来对频谱图进行去噪,从而为解决 SS 问题提供了一种更简单而有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Addressing preprocessing for spectrum sensing using image processing

Addressing preprocessing for spectrum sensing using image processing
This paper presents a novel approach to preprocessing spectrograms for spectrum sensing (SS) from the image-processing perspective. Gaussian bilateral filtering, a common image-denoising technique, has been introduced to improve spectrograms in SS in high-noise environments. This approach is evaluated by simulating LTE and 5 G NR signal spectrograms across various signal-to-noise ratios (SNRs). An extensive review and comparison with recent spectrogram-based works for different applications demonstrated that the proposed approach does not depend on deep learning models to denoise spectrograms, showing a simpler yet effective strategy to address SS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信