{"title":"弦图子类的注入着色","authors":"B.S. Panda, Rumki Ghosh","doi":"10.1016/j.tcs.2024.114894","DOIUrl":null,"url":null,"abstract":"<div><div>An injective <em>k</em>-coloring of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> such that for every pair of vertices <em>u</em> and <em>v</em> having a common neighbor, <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>. The injective chromatic number <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum <em>k</em> for which <em>G</em> admits an injective <em>k</em>-coloring. Given a graph <em>G</em> and a positive integer <em>k</em>, <span>Decide Injective Coloring Problem</span> is to decide whether <em>G</em> admits an injective k-coloring. <span>Decide Injective Coloring Problem</span> is known to be NP-complete for chordal graphs. In this paper, we strengthen this result by proving that <span>Decide Injective coloring Problem</span> remains NP-complete for undirected path graphs, a proper subclass of chordal graphs. Moreover, we show that it is not possible to approximate the injective chromatic number of an undirected path graph within a factor of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span> in polynomial time for every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> unless ZPP = NP. On the positive side, we prove that the injective chromatic number of an interval graph is either <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> or <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum degree of <em>G</em>. We also characterize the interval graphs having <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. As a consequence of this characterization, we obtain a linear time algorithm to find the injective chromatic number of an interval graph.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1023 ","pages":"Article 114894"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injective coloring of subclasses of chordal graphs\",\"authors\":\"B.S. Panda, Rumki Ghosh\",\"doi\":\"10.1016/j.tcs.2024.114894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An injective <em>k</em>-coloring of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> such that for every pair of vertices <em>u</em> and <em>v</em> having a common neighbor, <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>. The injective chromatic number <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum <em>k</em> for which <em>G</em> admits an injective <em>k</em>-coloring. Given a graph <em>G</em> and a positive integer <em>k</em>, <span>Decide Injective Coloring Problem</span> is to decide whether <em>G</em> admits an injective k-coloring. <span>Decide Injective Coloring Problem</span> is known to be NP-complete for chordal graphs. In this paper, we strengthen this result by proving that <span>Decide Injective coloring Problem</span> remains NP-complete for undirected path graphs, a proper subclass of chordal graphs. Moreover, we show that it is not possible to approximate the injective chromatic number of an undirected path graph within a factor of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span> in polynomial time for every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> unless ZPP = NP. On the positive side, we prove that the injective chromatic number of an interval graph is either <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> or <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum degree of <em>G</em>. We also characterize the interval graphs having <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. As a consequence of this characterization, we obtain a linear time algorithm to find the injective chromatic number of an interval graph.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1023 \",\"pages\":\"Article 114894\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005115\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
图 G=(V,E)的注入式 k 着色是一个函数 f:V→{1,2,...,k},对于每一对有共同邻接的顶点 u 和 v,f(u)≠f(v)。图 G 的注入色度数 χi(G)是 G 允许注入 k 着色的最小 k。给定一个图 G 和一个正整数 k,"决定注入着色问题"(Decide Injective Coloring Problem)就是要决定 G 是否允许注入 k 着色。众所周知,对于弦图,决定注入式着色问题是 NP-完全的。在本文中,我们通过证明 "决定注入着色问题 "对于无向路径图--弦图的一个适当子类--仍然是 NP-完全的,从而加强了这一结果。此外,我们还证明,除非 ZPP = NP,否则不可能在多项式时间内,对每个 ε>0 以 n1/3-ε 的因子逼近无向路径图的注入色度数。我们还描述了具有 χi(G)=Δ(G) 和 χi(G)=Δ(G)+1 的区间图的特征。根据这一特征,我们得到了求区间图注入色度数的线性时间算法。
Injective coloring of subclasses of chordal graphs
An injective k-coloring of a graph is a function such that for every pair of vertices u and v having a common neighbor, . The injective chromatic number of a graph G is the minimum k for which G admits an injective k-coloring. Given a graph G and a positive integer k, Decide Injective Coloring Problem is to decide whether G admits an injective k-coloring. Decide Injective Coloring Problem is known to be NP-complete for chordal graphs. In this paper, we strengthen this result by proving that Decide Injective coloring Problem remains NP-complete for undirected path graphs, a proper subclass of chordal graphs. Moreover, we show that it is not possible to approximate the injective chromatic number of an undirected path graph within a factor of in polynomial time for every unless ZPP = NP. On the positive side, we prove that the injective chromatic number of an interval graph is either or , where is the maximum degree of G. We also characterize the interval graphs having and . As a consequence of this characterization, we obtain a linear time algorithm to find the injective chromatic number of an interval graph.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.