{"title":"有限维 1-岩永-哥伦布代数的倾斜理论","authors":"Yuta Kimura , Hiroyuki Minamoto , Kota Yamaura","doi":"10.1016/j.jalgebra.2024.08.034","DOIUrl":null,"url":null,"abstract":"<div><div>We study tilting objects of the stable category <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span> of graded Cohen-Macaulay modules over a finite dimensional graded Iwanaga-Gorenstein algebra <em>A</em>. We first show that if there exists a tilting object in <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span>, then its endomorphism algebra always has finite global dimension. Next, to study the existence of a tilting object, we introduce a numerical invariant <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In the case where <em>A</em> is 1-Iwanaga-Gorenstein, we give a sufficient condition on <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for the existence of a tilting object. As an application, for a truncated preprojective algebra <span><math><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> of a tree quiver <em>Q</em>, we prove that <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> always admits a tilting object.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tilting theory for finite dimensional 1-Iwanaga-Gorenstein algebras\",\"authors\":\"Yuta Kimura , Hiroyuki Minamoto , Kota Yamaura\",\"doi\":\"10.1016/j.jalgebra.2024.08.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study tilting objects of the stable category <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span> of graded Cohen-Macaulay modules over a finite dimensional graded Iwanaga-Gorenstein algebra <em>A</em>. We first show that if there exists a tilting object in <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span>, then its endomorphism algebra always has finite global dimension. Next, to study the existence of a tilting object, we introduce a numerical invariant <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In the case where <em>A</em> is 1-Iwanaga-Gorenstein, we give a sufficient condition on <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for the existence of a tilting object. As an application, for a truncated preprojective algebra <span><math><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> of a tree quiver <em>Q</em>, we prove that <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> always admits a tilting object.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究有限维分级岩永-戈伦斯坦代数 A 上的分级科恩-麦考莱模块稳定范畴 CM_ZA 的倾斜对象。我们首先证明,如果 CM_ZA 中存在一个倾斜对象,那么它的内构代数总是具有有限全维。接下来,为了研究倾斜对象的存在,我们引入了数值不变式 g(A)。在 A 是 1-Iwanaga-Gorenstein 的情况下,我们给出了 g(A) 存在倾斜对象的充分条件。作为应用,对于树状四元组 Q 的截断前投影代数Π(Q)w,我们证明 CM_ZΠ(Q)w 总是承认一个倾斜对象。
Tilting theory for finite dimensional 1-Iwanaga-Gorenstein algebras
We study tilting objects of the stable category of graded Cohen-Macaulay modules over a finite dimensional graded Iwanaga-Gorenstein algebra A. We first show that if there exists a tilting object in , then its endomorphism algebra always has finite global dimension. Next, to study the existence of a tilting object, we introduce a numerical invariant . In the case where A is 1-Iwanaga-Gorenstein, we give a sufficient condition on for the existence of a tilting object. As an application, for a truncated preprojective algebra of a tree quiver Q, we prove that always admits a tilting object.