Hang Fu , Ziyan Ling , Genyun Sun , Jinchang Ren , Aizhu Zhang , Li Zhang , Xiuping Jia
{"title":"HyperDehazing:高光谱图像去雾基准数据集和用于去除雾霾的深度学习模型","authors":"Hang Fu , Ziyan Ling , Genyun Sun , Jinchang Ren , Aizhu Zhang , Li Zhang , Xiuping Jia","doi":"10.1016/j.isprsjprs.2024.09.034","DOIUrl":null,"url":null,"abstract":"<div><div>Haze contamination severely degrades the quality and accuracy of optical remote sensing (RS) images, including hyperspectral images (HSIs). Currently, there are no paired benchmark datasets containing hazy and haze-free scenes in HSI dehazing, and few studies have analyzed the distributional properties of haze in the spatial and spectral domains. In this paper, we developed a new hazy synthesis strategy and constructed the first hyperspectral dehazing benchmark dataset (HyperDehazing), which contains 2000 pairs synthetic HSIs covering 100 scenes and another 70 real hazy HSIs. By analyzing the distribution characteristics of haze, we further proposed a deep learning model called HyperDehazeNet for haze removal from HSIs. Haze-insensitive longwave information injection, novel attention mechanisms, spectral loss function, and residual learning are used to improve dehazing and scene reconstruction capability. Comprehensive experimental results demonstrate that the HyperDehazing dataset effectively represents complex haze in real scenes with synthetic authenticity and scene diversity, establishing itself as a new benchmark for training and assessment of HSI dehazing methods. Experimental results on the HyperDehazing dataset demonstrate that our proposed HyperDehazeNet effectively removes complex haze from HSIs, with outstanding spectral reconstruction and feature differentiation capabilities. Furthermore, additional experiments conducted on real HSIs as well as the widely used Landsat-8 and Sentinel-2 datasets showcase the exceptional dehazing performance and robust generalization capabilities of HyperDehazeNet. Our method surpasses other state-of-the-art methods with high computational efficiency and a low number of parameters.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 663-677"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HyperDehazing: A hyperspectral image dehazing benchmark dataset and a deep learning model for haze removal\",\"authors\":\"Hang Fu , Ziyan Ling , Genyun Sun , Jinchang Ren , Aizhu Zhang , Li Zhang , Xiuping Jia\",\"doi\":\"10.1016/j.isprsjprs.2024.09.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Haze contamination severely degrades the quality and accuracy of optical remote sensing (RS) images, including hyperspectral images (HSIs). Currently, there are no paired benchmark datasets containing hazy and haze-free scenes in HSI dehazing, and few studies have analyzed the distributional properties of haze in the spatial and spectral domains. In this paper, we developed a new hazy synthesis strategy and constructed the first hyperspectral dehazing benchmark dataset (HyperDehazing), which contains 2000 pairs synthetic HSIs covering 100 scenes and another 70 real hazy HSIs. By analyzing the distribution characteristics of haze, we further proposed a deep learning model called HyperDehazeNet for haze removal from HSIs. Haze-insensitive longwave information injection, novel attention mechanisms, spectral loss function, and residual learning are used to improve dehazing and scene reconstruction capability. Comprehensive experimental results demonstrate that the HyperDehazing dataset effectively represents complex haze in real scenes with synthetic authenticity and scene diversity, establishing itself as a new benchmark for training and assessment of HSI dehazing methods. Experimental results on the HyperDehazing dataset demonstrate that our proposed HyperDehazeNet effectively removes complex haze from HSIs, with outstanding spectral reconstruction and feature differentiation capabilities. Furthermore, additional experiments conducted on real HSIs as well as the widely used Landsat-8 and Sentinel-2 datasets showcase the exceptional dehazing performance and robust generalization capabilities of HyperDehazeNet. Our method surpasses other state-of-the-art methods with high computational efficiency and a low number of parameters.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 663-677\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003721\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003721","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
HyperDehazing: A hyperspectral image dehazing benchmark dataset and a deep learning model for haze removal
Haze contamination severely degrades the quality and accuracy of optical remote sensing (RS) images, including hyperspectral images (HSIs). Currently, there are no paired benchmark datasets containing hazy and haze-free scenes in HSI dehazing, and few studies have analyzed the distributional properties of haze in the spatial and spectral domains. In this paper, we developed a new hazy synthesis strategy and constructed the first hyperspectral dehazing benchmark dataset (HyperDehazing), which contains 2000 pairs synthetic HSIs covering 100 scenes and another 70 real hazy HSIs. By analyzing the distribution characteristics of haze, we further proposed a deep learning model called HyperDehazeNet for haze removal from HSIs. Haze-insensitive longwave information injection, novel attention mechanisms, spectral loss function, and residual learning are used to improve dehazing and scene reconstruction capability. Comprehensive experimental results demonstrate that the HyperDehazing dataset effectively represents complex haze in real scenes with synthetic authenticity and scene diversity, establishing itself as a new benchmark for training and assessment of HSI dehazing methods. Experimental results on the HyperDehazing dataset demonstrate that our proposed HyperDehazeNet effectively removes complex haze from HSIs, with outstanding spectral reconstruction and feature differentiation capabilities. Furthermore, additional experiments conducted on real HSIs as well as the widely used Landsat-8 and Sentinel-2 datasets showcase the exceptional dehazing performance and robust generalization capabilities of HyperDehazeNet. Our method surpasses other state-of-the-art methods with high computational efficiency and a low number of parameters.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.