{"title":"带有高斯随机场先验的变异自动编码器:应用于航空图像中的无监督动物检测","authors":"Hugo Gangloff , Minh-Tan Pham , Luc Courtrai , Sébastien Lefèvre","doi":"10.1016/j.isprsjprs.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 600-609"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Autoencoder with Gaussian Random Field prior: Application to unsupervised animal detection in aerial images\",\"authors\":\"Hugo Gangloff , Minh-Tan Pham , Luc Courtrai , Sébastien Lefèvre\",\"doi\":\"10.1016/j.isprsjprs.2024.09.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 600-609\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003666\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003666","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在现实世界的航空图像数据集中,所关注的对象往往是缺失的、难以注释的,而且涉及不同的方面。在这种情况下,无监督异常检测(AD)框架就显得非常重要,而变异自动编码器(VAE)是一种流行的概率模型,经常被使用。为了利用自然航空图像中出现的特殊纹理,我们开发了用于 AD 的变异自动编码器文献。更确切地说,我们提出了一种具有高斯随机场(GRF)先验的新 VAE 模型(VAE-GRF),它是对经典 VAE 模型的概括,我们还提供了使该模型具有可操作性所需的必要程序和假设。我们的研究表明,在某些假设条件下,VAE-GRF 在很大程度上优于传统的 VAE 和其他一些针对 AD 开发的概率模型。我们的研究结果表明,VAE-GRF 可以作为相关的 VAE 基线,取代传统的 VAE,而且额外的计算成本非常有限。我们在 MVTec 视觉检测参考数据集和另外两个专门用于航空图像中无监督动物检测任务的数据集上提供了具有竞争力的结果。
Variational Autoencoder with Gaussian Random Field prior: Application to unsupervised animal detection in aerial images
In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.