{"title":"基于子单元黎曼求解器的交错拉格朗日磁流体力学方法","authors":"Xun Wang , Hongping Guo , Zhijun Shen","doi":"10.1016/j.jcp.2024.113479","DOIUrl":null,"url":null,"abstract":"<div><div>This paper uses a general formalism to derive staggered Lagrangian method for 2D compressible magnetohydrodynamics (MHD) flows. A subcell method is introduced to discretize the MHD system and some Riemann problems over subcells are solved at the cell center and grid node respectively. In these solvers, only the fast-waves in all jumping relations are considered and thus the solution structure is simple. The discrete conservations of mass, momentum and energy are preserved naturally in the proposed numerical method. In order to meet the thermodynamic Gibbs relation in isentropic flows, an adaptive Riemann solver is implemented at the cell center, in which a criterion is proposed to reduce overheating errors in the rarefying problems and maintains the excellent shock-capturing ability simultaneously. It is worth to be noticed that the divergence-free condition is naturally satisfied in the Lagrangian method. Various numerical tests are presented to demonstrate the accuracy and robustness of the algorithm.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113479"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A staggered Lagrangian magnetohydrodynamics method based on subcell Riemann solver\",\"authors\":\"Xun Wang , Hongping Guo , Zhijun Shen\",\"doi\":\"10.1016/j.jcp.2024.113479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper uses a general formalism to derive staggered Lagrangian method for 2D compressible magnetohydrodynamics (MHD) flows. A subcell method is introduced to discretize the MHD system and some Riemann problems over subcells are solved at the cell center and grid node respectively. In these solvers, only the fast-waves in all jumping relations are considered and thus the solution structure is simple. The discrete conservations of mass, momentum and energy are preserved naturally in the proposed numerical method. In order to meet the thermodynamic Gibbs relation in isentropic flows, an adaptive Riemann solver is implemented at the cell center, in which a criterion is proposed to reduce overheating errors in the rarefying problems and maintains the excellent shock-capturing ability simultaneously. It is worth to be noticed that the divergence-free condition is naturally satisfied in the Lagrangian method. Various numerical tests are presented to demonstrate the accuracy and robustness of the algorithm.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113479\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007277\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007277","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A staggered Lagrangian magnetohydrodynamics method based on subcell Riemann solver
This paper uses a general formalism to derive staggered Lagrangian method for 2D compressible magnetohydrodynamics (MHD) flows. A subcell method is introduced to discretize the MHD system and some Riemann problems over subcells are solved at the cell center and grid node respectively. In these solvers, only the fast-waves in all jumping relations are considered and thus the solution structure is simple. The discrete conservations of mass, momentum and energy are preserved naturally in the proposed numerical method. In order to meet the thermodynamic Gibbs relation in isentropic flows, an adaptive Riemann solver is implemented at the cell center, in which a criterion is proposed to reduce overheating errors in the rarefying problems and maintains the excellent shock-capturing ability simultaneously. It is worth to be noticed that the divergence-free condition is naturally satisfied in the Lagrangian method. Various numerical tests are presented to demonstrate the accuracy and robustness of the algorithm.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.