{"title":"基于直接求解玻尔兹曼动力学方程的稀薄气体混合物冲击波数值模拟方法","authors":"S.S. Sitnikov , F.G. Tcheremissine","doi":"10.1016/j.jcp.2024.113463","DOIUrl":null,"url":null,"abstract":"<div><div>The paper proposes an approach to numerical simulation of shock waves in rarefied gas mixtures on the basis of direct solution of the Boltzmann kinetic equation. Software for simulating the gas flows was developed. The structure of a shock wave in a binary gas mixture was computed with an accuracy controlled by the computational parameters. The computations were performed for various molecular masses ratios and Mach numbers. The total accuracy of at least 1.4% for the local values of the molecular densities and temperatures of the mixture components was achieved. Numerical simulation of a shock wave propagation through a periodically perforated surface was performed. The distributions of the macroscopic characteristics of the mixture components at various points in time were obtained. Unsteady areas of strong separation of the gas mixture components were discovered.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113463"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for numerical simulation of shock waves in rarefied gas mixtures based on direct solution of the Boltzmann kinetic equation\",\"authors\":\"S.S. Sitnikov , F.G. Tcheremissine\",\"doi\":\"10.1016/j.jcp.2024.113463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper proposes an approach to numerical simulation of shock waves in rarefied gas mixtures on the basis of direct solution of the Boltzmann kinetic equation. Software for simulating the gas flows was developed. The structure of a shock wave in a binary gas mixture was computed with an accuracy controlled by the computational parameters. The computations were performed for various molecular masses ratios and Mach numbers. The total accuracy of at least 1.4% for the local values of the molecular densities and temperatures of the mixture components was achieved. Numerical simulation of a shock wave propagation through a periodically perforated surface was performed. The distributions of the macroscopic characteristics of the mixture components at various points in time were obtained. Unsteady areas of strong separation of the gas mixture components were discovered.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113463\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007113\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007113","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A method for numerical simulation of shock waves in rarefied gas mixtures based on direct solution of the Boltzmann kinetic equation
The paper proposes an approach to numerical simulation of shock waves in rarefied gas mixtures on the basis of direct solution of the Boltzmann kinetic equation. Software for simulating the gas flows was developed. The structure of a shock wave in a binary gas mixture was computed with an accuracy controlled by the computational parameters. The computations were performed for various molecular masses ratios and Mach numbers. The total accuracy of at least 1.4% for the local values of the molecular densities and temperatures of the mixture components was achieved. Numerical simulation of a shock wave propagation through a periodically perforated surface was performed. The distributions of the macroscopic characteristics of the mixture components at various points in time were obtained. Unsteady areas of strong separation of the gas mixture components were discovered.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.